
Factor 10x - Super Efficient Startups

Business patterns for servicing many 
customers with a small team



Summary

▪ This talk is about the usual stuff:

– War stories from a start-up

– Software reuse

– Disparate roles and their communication 
in developer teams, like most agile 
methodologies

▪ But there are special twists:

– Extreme efficiency (because there were 
only two guys with awkward CVs)

– We use a heavy mix of business + tech 
language to explain how this works

– Nice pictures & awkward jokes



Limitations & 
Down-Side

▪ Limitations - These ideas only work 
for:
– B2B or business software

– Relatively slow changing market

– Market niche with high-sophistication 
software

▪ Down-Side:
– Living by your limits - e.g. an "ugly" UI

– Not moving particularly fast (not having 
the "fast mover" advantage but having 
the "survivor" advantage)



Quickly about ]project-open[



Facts about ]project-open[

HR

Project

Mgmt

Finance

CRM

Reporting

& BI
ITSM

Collabo-

ration

Integration Interfaces

SAP/Navision, MS-Project, LDAP, …

▪ Multi-Project Management Web Application
▪ ~6,000 Customers in 30 countries
▪ Some really big customers
▪ ~200,000 Users connecting to a ]po[ server every week

▪ ~250 functional "packages"
▪ ~1,000 Web "pages"
▪ 1.7 M LoC (2.5M LoC – 30% JavaScript)

▪ Developed and run mainly by two guys

http://www.project-open.org/en/module_human_resources
http://www.project-open.org/en/module_project_management
http://www.project-open.org/en/module_finance
http://www.project-open.org/en/module_crm
http://www.project-open.org/en/module_reporting
http://www.project-open.org/en/module_itsm
http://www.project-open.org/en/module_collaboration_knowledge
http://www.project-open.org/en/list_integration_links
http://www.project-open.org/en/integration_sap_fi
http://www.project-open.org/en/integration_navision
http://www.project-open.org/en/integration_ms_project
http://www.project-open.org/en/integration_active_directory


Small Team Companies

▪ Philip Greenspun: 
"There is no [Web] problem that 5 developers couldn‘t 
solve in 3 months"

▪ CraigList:
Few guys

▪ WhatsApp: 
200 million users with 50 Employees in 2013



What is ]project-open[? – Old-Style Page



What is ]project-open[? - HTML5 Page



What is ]project-open[?

What is ]project-open[?

▪ ]po[ is an open source project management application with 
a focus on finance and collaboration. 

▪ It’s main purpose is to coordinate the work of project 
managers, project members and stake holders across 
multiple projects. 

▪ Target organizations are companies or corporate 
departments that need to track finances, tasks, and 
resources for a large number of concurrently running 
projects.

Customers
▪ ~6.000 companies worldwide use ]po[ in production.
▪ Top #3 European Bank (~1.500 users)
▪ Basler Kantonalbank (~300 users)
▪ Eroski Supermarkets (~300 users)
▪ Cambridge Technology Partners (~250 users)
▪ Seguros Lagunar Aro (~150 users)
▪ DHL Malaysia (~150 users)
▪ VAW arvato S.L. (Bertelsmann) (~60)

Achievements
▪ Optaros: "3 stars – mature" enterprise readiness rating

▪ Heise.de: "Germany’s #3 open-source ERP/CRM application"

▪ Ohloh: "#1 open-source web application with 3.000.000 lines of code"

▪ SourceForge: Ranking between #50-200 and 80.000 downloads of ]po[ 
V3.5

HR

Project

Mgmt

Finance

CRM

Reporting

& BI
ITSM

Collabo-

ration

Integration Interfaces

SAP/Navision, MS-Project, LDAP, …

http://www.project-open.org/en/module_human_resources
http://www.project-open.org/en/module_project_management
http://www.project-open.org/en/module_finance
http://www.project-open.org/en/module_crm
http://www.project-open.org/en/module_reporting
http://www.project-open.org/en/module_itsm
http://www.project-open.org/en/module_collaboration_knowledge
http://www.project-open.org/en/list_integration_links
http://www.project-open.org/en/integration_sap_fi
http://www.project-open.org/en/integration_navision
http://www.project-open.org/en/integration_ms_project
http://www.project-open.org/en/integration_active_directory


20162015

]po[ Time Line

2014

E
P

M

2003 2004 2005 2006 2007 2008 2009 2010 20122011 2013

▪ V3.2

▪ V3.3

▪ V3.4

▪ V3.5

▪ V4.0▪ (V1.0)

▪ V2.0

▪ V3.0

▪ V3.1

◆Banco Santander

◆Cambridge Technology Partners

◆ ]po[ is market leader 

◆ First customer rollout

P
ro

d
u

c
t

T
ra

n
s
la

ti
o
n

◆ Leinhäuser

◆Project Start

◆Champ

◆Eroski

◆Moravia

◆DHL Malaysia

◆Reinisch

◆Basler Kantonalbank

◆Seguros Lagunaro

◆VAW Arvato

▪ V4.1

◆ LA-SER Europe

◆ Jago

◆SolidLine

◆ IBM Austria



Factor 10x



Factor 10x
▪ Code Reuse & Efficiency

– Open-Source Model
– "Catapult Start"
– "Raw Diamonds"
– "MBA Codes"
– About Libraries
– Functional Style
– "Sunflower Model"

▪ Business Strategy
– "Bridging the Chasm"
– "Project vs. Product"
– "Product Management & Strategy"
– "Zero Sales"
– "Zero Support"



Intro: Factor 10



Open-Source Operation Models

▪ Coding

– Open-Source Development Model

– Open-Source Reuse Model

– Open-Source Security Model

▪ Business

– Open-Source Distribution Model

– Open-Source Sales Model

– Open-Source Support Model

– Open-Source Product Management Model



]project-open[ and OpenACS

]project-open[
▪ 2+1 Owners, Σ60 years in IT
▪ Product driven

Developers/Partners
▪ ~10 Freelancers, ~15 Partners
▪ Sales driven

OpenACS/AOLserver
▪ 10.000 Members, ~100 active 

developers
▪ Driven by ~10 small web companies
▪ OpenACS Products: dotLrn e-learning 

platform
▪ Technology driven





Catapult Start – Knowledge Dept

Business

▪ No idea what the customers really want

▪ No idea what the customers would pay for

▪ No idea about the competition

▪ No idea what features you’ll need to implement in the 
future

Technology

▪ No experience yet with the chosen framework

▪ No experience yet if the infrastructure really scales

▪ No experience with debugging the production system



Catapult Start the MVP

▪ Get your Minimum Viable Product to the market ASAP

– Start with an existing (open-source) application/framework

– Start with an alpha-customer who urgently needs the 
functionality and provides you functional clues

▪ Negative Formulation

– Reduce your lack of market knowledge by using a real-world customer

– Reduce your lack of app application by using a proven application/framework

– Reduce the lack of trust from your alpha and other customer with fast results

▪ The ]project-open[ Case

– We chose the OpenACS 3.4 framework, the most mature Web framework in 2003

– OpenACS was proven to work with a million concurrent users

– OpenACS already had an embryonic "intranet" package with projects and hours

– The alpha-customer was the company of my then-wife. It had an urgent need to better manage project resources

▪ Results

– Three month after the start, the first PMs managed resources with ]project-open[

– Thanks to the new application, the translation company made €20.000 in additional benefits

– We had our first success story

– This story convinced a lot of similar customers…



Catapult Start

Examples

▪ Wordpress or similar (Web Application)

▪ Java Technology stack + some OSS application

▪ Sencha ExtJS/Touch for mobile app



Raw Diamonds



Raw Diamonds

▪ Add Value to Open-Source Products

– Take an existing (open-source) product

– Adapt it to specific customer needs

– Add support or other services

▪ How does it work

– Open-source projects sometimes create impressive technologies

– However, most OSS developers don‘t understand (B2B) customer needs

– Somebody with deep customer knowledge needs to polishing the diamonds according to business needs

▪ Problems

– Multiple diamonds need to fit together



Raw Diamonds

▪ Examples

– Easy REDMINE (Redmine + SaaS + support + GUI)

– EnterpriseDB (PostgreSQL + support)

– Univention Linux (Linux + Samba4 / Active Directory)

– Microsoft SQL-Server (Sybase + …)





Libraries/Frameworks

"I found this cool library. 
It’s brand new and easy to use" 

Death verdict for the startups



Libraries/Frameworks

"The scary thing about libraries is that there 
are always some that seem to outsiders to be 

fine, responsible choices and yet […] will 
destroy you if you choose them." 

http://paulgraham.com/startupmistakes.html



Libraries/Frameworks Checklist

Libraries cover "commodity" functionality.
It should cover ALL commodity functionality:

▪ Localization
– UTF-8
– Number, date & currency formatting
– Localization workflow

▪ Debugging Tools
▪ Peformance

– Clustering, scaling, parallelization
– Performance debugging

▪ "Horizontal Functionality"
– Permissions 
– Web APIs (REST, JSON, XML, ...)
– Workflow
– Email notifications & parsing
– Search-Engine

▪ Team collaboration
▪ Scripting
▪ ... (just have a look at some better ones)

▪ GUI Widgets
▪ GUI Forms
▪ Diagrams
▪ ...

▪ Actually working system in a 
similar area like yours



"MBA Codes"



"MBA Codes"

Client Analyst PM Dev. UserCEO Dept.

Stake
Holders

Spheres
"Emotional" "Em."

How to use "logical tools" to 
analyze the "human issues"?

"How can we get rid of 
all this task crap?"

"Logicians"

System

The Problem According to Alan Cooper



"MBA Codes"

Client Analyst PM Dev. UserCEO Dept.

Stake
Holders

System

The Problem According to Alan Cooper

"MBA"

Only works with highly 

efficient library/framework



"MBA Codes" - ]po[ Product Development Pipeline

▪ Results from brainstorming, conference, …

▪ Product definition as PowerPoint slides

▪ "Dynamic Mockup"

▪ Show mockup to customers, conferences, …

▪ Implementation driven by customer’s input

▪ Re-Implementation with product in mind

▪ Cleanup and productification

Inputs:

▪ Overall strategy

▪ Industry trends & 

best practices

Definition Prototype
Customer
Feedback

First
Customer

Second
Customer

ProductNeed/
Idea

100%0% 40% 70%10%5%2%1%

▪ Remove any 

customer 

specifics

▪ Make fully 

configurable

▪ Write manuals

▪ Initial version without 

industry knowledge

▪ Rewrite, 

generalize first 

implementation

▪ Serves as mockup for 

customer demos

Status: Idea

Status: Feedback

Status: Prototype

Status: Product

Status: Definition

Status: 2nd Cust

Status: 1st Cust





What if I told you

functions are values?λ -





Functional Style

Functionality – Prefab

▪ Time =  ----------------------------

EffLang * EffLib * EffDev

▪ Types of Efficiency:

– Language Efficiency

– Library Efficiency

– Developer Efficiency

– Team Efficiency

▪ Interpreting code allows for efficient scripting etc.

▪ Special-purpose sub-languages





CRM

Call
Center

Sales force 
Mgmt

Project
Mgmt

Support
Mgmt

HR

Project
Reporting

KM

Projects

Users

Clients

Invoices

Expenses

Account-
ing

Inventory
Mgmt

…

…

CRM

Call
Center

Project
Mgmt

Service
Mgmt

HR

Project
Reporting

KM

Account-
ing

Inventory
Mgmt

Report-
Generator

CRM

Call
Center

Sales 
Mgmt

HR

Project
Reporting

KM

Account-
ing

Inventory
Mgmt

Report-
Generator

Functional
Cancer



▪ Generic

▪ "Core"

▪ Slow changing

▪ High-Quality

▪ Configurable

▪ Low Biz Value

▪ "Product"

▪ Specific

▪ Non-Core

▪ Fast changing

▪ Low-Quality

▪ Customizable

▪ High Biz Value

▪ "Project" 



Two Examples

All-time customer revenues 
DynField Maintenance Screen

("dynamic fields")



Two Examples

Criteria/Dimension Customer Revenue Widger DynField Maintenance

Technology Sencha HTML5 "ad_form"

Prettyness High Very low

Genericity High Very high

Distance from "Core" High Low (this is part of the Core...)

Interconnection Low High

Change Speed Medium Very low

Customer Value High High

Strategic Value (for Cust) Low Low

"Curedness" (like ham) Low High

Algorithmic Complexity Medium Low

Usage Frequency High Very low

VIP Level High Very low

Alignment with Product Strategy High High



Open-Source vs. Closed Source

]project-open[

AOLServer

PostgreSQL

Linux

OpenACS „Core"

A
d

m
in

A
u

th
e

n
ti
c
a

ti
o

n

P
e

rm
is

s
io

n
s

D
e

v
 S

u
p

p
o

rt

Windows

]p
o

[ 
A

u
d

it

] 
p

o
[ 
D

W

]p
o

[ 
E

a
rn

e
d

 V
a

lu
e

]p
o

[ 
…

]p
o

[ 
C

o
re

Open Source

(GPL V2.0)
Closed Source

add-ons

. 
. 

.

. 
. 

.
]p

o
[ 
D

y
n

F
ie

ld
s

]p
o

[ 
D

y
n

F
ie

ld
s



Factor 10x
▪ Code Reuse & Efficiency

– Open-Source Model
– "Catapult Start"
– "Raw Diamonds"
– "MBA Codes"
– About Libraries
– Functional Style
– "Sunflower Model"

▪ Business Strategy
– "Bridging the Chasm"
– "Project vs. Product"
– "Product Management & Strategy"
– "Zero Sales"
– "Zero Support"



Bridging the Chasm

Tornado

Bowling alley

Beach 
head

Chasm

5%

10%

35%
35%

15%

ConservativesPragmatistsInnovators Visionaries Skeptics

Geoffrey A. Moore



20162015

Bridging the Chasm - ]po[ Time Line

2014

E
P

M

2003 2004 2005 2006 2007 2008 2009 2010 20122011 2013

▪ V3.2

▪ V3.3

▪ V3.4

▪ V3.5

▪ V4.0▪ (V1.0)

▪ V2.0

▪ V3.0

▪ V3.1

◆Banco Santander

◆Cambridge Technology Partners

◆ ]po[ is market leader 

◆ First customer rollout

P
ro

d
u

c
t

T
ra

n
s
la

ti
o
n

◆ Leinhäuser

◆Project Start

◆Champ

◆Eroski

◆Moravia

◆DHL Malaysia

◆Reinisch

◆Basler Kantonalbank

◆Seguros Lagunaro

◆VAW Arvato

▪ V4.1

◆ LA-SER Europe

◆ Jago

◆SolidLine

◆ IBM Austria



Zero Sales

▪ Wait until your customers approach you
– Some customers actually research the market
– Provide 10x better value than any competitor

and/or specialize on a small niche
– Maintain basic Google visibility

▪ Select the customers you want to serve
– Strategic alignment of needs
– Matching "customer sophistication"
– Did download and check the open-source product
– Have money

▪ Actual Sales activities
– Product Demo
– Reference customers
– Quoting
– ...

▪ Spread the word about your customers
– Include viral elements in software
– Write Success Stories (see HowTo)
– Leverage open-source Marketing & PR

▪ Zero Sales in Open-Source can work because:
– Creation costs are 10x – 100x cheaper compared with closed-source
– You know that this is not cheesy, because of OSS dynamics
– You know you’ll have to put the screws yourself :-)
– Not all Open-Source products may meet your quality criteria, though.

Dimension 1

e.g. GUI Quality

D
im

e
n

s
io

n
 2

e
.g

. 
S

o
p

h
is

ti
c
a
ti
o
n

This is where 

you are

This is where 

you want to be

New customer

is here

What are you going to do?



Project vs. Product

Project Product

Customers 1 6.000

Business Objectives Get stuff done Do things right

Who takes investment decision?
The customer. 

We just execute
You yourself.

Learn how to write off money.

Efficiency measure Finish on time and budget
Time to market,

differential functionality, 
low support

Code quality Medium-low High

How to deal with variability Customize Configure

Recommended Organization Separate project team Separate product team

Requirement Gathering
Requirement engineering

with 1 customer

Understand market/business 
needs, check competition, listen 
to 6.000 customers, conferenes, 

biz textbook, ...



Zero Support

▪ Every bug will jump at you at some moment.
▪ 80% of our support cases come from specific (non-reused) code
▪ Whenever you add something to your system, consider the cost of maintenance
▪ Keep your Core clean

▪ Specific vs. re-used code
– Maximize pieces of code used multiple times
– Reduce size of code used only once per feature

▪ Customer customization requests
– Make sure your business model doesn’t need them…
– Make them so expensive, that they become profitable
– "Tooth extraction": Understand the business reason _behind_ the requirements, so that you 

can re-formulate them according to your product strategy

▪ General tips
– Use configuration instead of customization
– Use a powerful library

▪ Reduce "Entropy" (="disorder") in features and in general



Factor 10x
▪ Code Reuse & Efficiency

– Open-Source Model
– "Catapult Start"
– "Raw Diamonds"
– "MBA Codes"
– Mature and complete library
– "Sunflower Model"
– Highly productive functional language

▪ Business Strategy
– "Bridging the Chasm"
– "Customer Self-Selection"
– "Product Management"
– "Zero Sales"
– "Zero Support"

▪ Code Economics
– "Sunflower Model"



Product 
Management 

& Strategy
▪ Define medium and long-term 

goals "where you want to be" 
with your product

– Define customers you want to 
serve

– Define dimensions of your 
product vs. customer needs vs. 
competitors

– Develop a roadmap with steps 
how to get there

– Define what you don‘t want to 
do

▪ Follow the strategy, unless a 
customer really pays a lot of 
money (it may be time to revise 
the strategy then...)

▪ Move non-strategic stuff into 
containers (add-on modules), so 
that it doesn‘t pollute the core.

Dimension 1

e.g. GUI Quality

D
im

e
n

s
io

n
 2

e
.g

. 
S

o
p

h
is

ti
c
a
ti
o
n

This is where 

you are

This is where 

you want to be

What are you going to do?

Path to target


