
Parallelizing Description Logics

Frank W. Bergmann and J. Joachim Quantz

Technische Universit�at Berlin, Projekt KIT-VM11

Abstract. Description Logics (DL), one of the major paradigms in

Knowledge Representation, face e�ciency problems due to large-scale

applications, expressive dialects, or complete inference algorithms. In

this paper we investigate the potential of parallelizing DL algorithms to

meet this challenge. Instead of relying on a parallelism inherent in logic

programming languages, we propose to exploit the application-speci�c

potentials of DL and to use a more data-oriented parallelization strategy

that is also applicable to imperative programming languages. We argue

that object-level propagation is the most promising inference component

for such a parallelization, as opposed to normalization, comparison, or

classi�cation.

We present two alternative PROLOG implementations of parallelized

propagation on a loosely coupled MIMD (Multiple Instruction, Multi-

ple Data) system, one based on a farm strategy, the other based on

distributed objects. Whereas the farm strategy yields only poor results,

the implementation based on distributed objects achieves a considerable

speedup, in particular for large-size applications.

1 Introduction

In the last 15 years Description Logics (DL) have become one of the major

paradigms in Knowledge Representation. Combining ideas from Semantic Net-

works and Frames with the formal rigor of First Order Logic, research in DL

has focussed on theoretical foundations [Donini Et Al. 91] as well as on sys-

tem development [Brachman Et Al. 91] and application in real-world scenarios

[Quantz, Schmitz 94].

Whereas in the beginning it was hoped that DL provide representation for-

malisms which allowed e�cient computation, at least three trends in recent years

caused e�ciency problems for DL systems and applications:

{ a trend towards expressive dialects;

{ a trend towards complete inference algorithms;

{ a trend towards large-scale applications.

With the current state of technology it seems not possible to build a DL

system for large-scale applications which o�ers an expressive dialect with com-

plete inference algorithms. The standard strategy to cope with this dilemma is

to restrict either expressivity, or completeness, or application size.

In this paper we investigate an alternative approach, namely a paralleliza-

tion of Description Logics. Due to physical limitations in performance gains in

conventional processor architectures, parallelization has become more and more

important in recent years. This comprises parallel structures inside processors

as well as outside by scaling several processors to parallel systems.

Several �elds of high-performance computing already adopted to this new

world of paradigms, such as image processing [Burkhard Et Al 94], �nite el-

ement simulation [Diekmann Et Al 94], and
uid dynamics [Strietzel 94]. We

expect that in future parallelism will become a standard technique in the con-

struction of complex AI applications.

A standard approach to parallelization in the context of logic program-

ming concentrates on the development of parallel languages that exploit the

parallelism inherent in the underlying logic formalism ([Clark, Gregory 87],

[Pontelli, Gupta 94] and many more). In this paper we will follow a rather di�er-

ent approach which analyzes a particular application, namely Description Logics.

The parallelization we propose uses explicit parallelism based on the notion of

processes and messages that is programming language independent.

In the next section we give a brief introduction into Description Logics and

the parallelization potential of DL inference algorithms. In Section 3 we describe

two di�erent strategies of parallelizing object-level propagation in DL systems.

The corresponding implementations are evaluated in detail in Section 4.

2 Description Logics

In this section we give a brief introduction into Description Logics. In doing so

we sketch the main inference components of a DL system and point out their

complexity and their potential for parallelization.

Basically, the alphabet of a Description Logic contains concepts (unary predi-

cates), Roles (binary predicates), and objects (individual constants). DL dialects

vary wrt the term-forming operators they support, e.g. conjunction, disjunction,

and negation for concepts and roles; value restrictions and number restrictions

for concepts; composition and inversions of roles.

Three types of formulae are usually distinguished in DL systems, namely

term introductions

1

(t

n

:< t or t

n

:= t), rules (c

1

=> c

2

), and object descriptions

(o :: c). Given a modeling, i.e. a list of such formulae, DL systems basically

answer two types of queries:

t

1

? < t

2

o ? : c

The �rst query succeeds i� the term t

1

is subsumed by the term t

2

(i.e. t

2

is more

general than t

1

), the second one i� the object o is an instance of the concept c.

Two main reasoning paradigms are used in DL systems. Originally, inferenc-

ing was realized by normalize-compare algorithms,which �rst transform concepts

and roles into normalforms and then structurally compare these normalforms.

Note that the normalforms of objects are similar to the normalforms of concepts

and can thus be generated and compared by the same algorithms.

1

We use `term' to designate both concepts and roles.

At the end of the 1980's tableaux methods, as known from fol were ap-

plied to DL (e.g. [Donini Et Al. 91]). The resulting subsumption algorithms had

the advantage of providing an excellent basis for theoretical investigations. Not

only was their correctness and completeness easy to prove, they also allowed a

systematic study of the decidability and the tractability of di�erent DL dialects.

The main disadvantage of tableaux-based subsumption algorithms is that

they are not constructive but rather employ refutation techniques. Thus in or-

der to prove the subsumption c

2

v c

1

it is proven that the term c

1

u : c

2

is

inconsistent, i.e. that o :: c

1

u : c

2

is not satis�able. Though this is straight-

forward for computing subsumption, this approach leads to e�ciency problems

in the context of retrieval. In order to retrieve the instances of a concept `c' in

a situation `s', we would in principle have to check for each object `o' whether

� [fo :: c in sg is satis�able.

2

In most existing systems, on the other hand, inference rules are more seen

as production rules, which are used to pre-compute part of the consequences of

the initial information. This corresponds more closely to Natural Deduction or

Sequent Calculi, two deduction systems also developed in the context of fol.

A third alternative, combining advantages of the normalize-compare approach

and tableaux-based methods has therefore been proposed in [Royer, Quantz 92].

The basic idea is to use Sequent Calculi instead of tableaux-based methods for

the characterization of the deduction rules. Like tableaux methods, sequent cal-

culi provide a sound logical framework, but whereas tableaux-based methods are

refutation based, i.e. suitable for theorem checking, sequent calculi are construc-

tive, i.e. suitable for theorem proving.

Based on the ideas presented in [Royer, Quantz 92, Royer, Quantz 94] the

DL system FLEX has been developed at the Technische Universit�at Berlin. The

parallelization described in the following has been performed for the FLEX sys-

tem. The general techniques are applicable to all normalize-compare systems,

however, and the following presentation does not rely on the particular features

of FLEX.

In the remainder of this section we brie
y sketch three main inference com-

ponents of DL systems, describe their realization within the normalize-compare

paradigm, and evaluate their potential for parallelization.

Subsumption Checking. To test subsumption between two terms, both terms are

�rst normalized and then structurally compared. The format of normalization

rules depends on the expressiveness of the DL dialect. For the purpose of this

paper it is su�cient to consider normalforms as sets of atoms and normalization

rules as having the form

�

1

; : : : ; �

n

* �

i.e. if the atoms �

1

; : : : ; �

n

are contained in a normalform, then � is added to

this normalform.

2

See [Schaerf 94] for tableaux-based algorithms for object-level reasoning and

[Kindermann 95] for a discussion of e�ciency problems.

In the comparison phase it is then checked whether for each atom in the

subsuming normalform we �nd an atom in the subsumed normalform which is

more speci�c.

Classi�cation. When processing the term introductions, each term name is classi-

�ed, i.e. compared with all previously introduced names. As a result subsumption

hierarchies for concepts and roles are obtained, which are directed acyclic graphs.

Classi�cation is basically realized by searching direct supers and direct subs in

the subsumption hierarchy, i.e. by a number of subsumption checks between the

new term and previously introduced terms.

Propagation. The two reasoning components described so far are usually called

terminological reasoning. We will now turn our attention towards assertional

reasoning, i.e. reasoning on the object level. The main di�erence between termi-

nological and assertional reasoning is that the former is inherently local, whereas

the latter is inherently global. In principle we can distinguish between a local

phase and a nonlocal phase in object-level reasoning.

In the local phase we determine for an object the most speci�c concept it

instantiates. This can be done by using the standard normalize and compare

predicates and the search for direct supers in the classi�cation component. Thus

we normalize the description of an object thereby obtaining a normal form and

compare it with the normal forms of the concepts in the hierarchy. In addition

to this standard classi�cation we also have to apply DL rules when processing

objects. This is achieved by applying all rules whose left-hand sides subsume the

object's normal form. After this application the normal form is again normalized

and classi�ed until no new rules are applicable [Owsnicki-Klewe 88].

In the nonlocal phase we have to propagate information to other objects. For

illustration consider the following propagation rules:

o

1

:: all(r,c) & r:o

2

* o

2

:: c

o

1

:: r:o

2

& atmost(1,r), o

2

:: c * o

1

:: all(r,c)

o

1

:: r

1

:o

2

, o

2

:: r

2

:o

3

* o

1

:: r

1

comp r

2

:o

3

o

1

:: r:o

2

* o

2

:: inv(r):o

1

We call these rules nonlocal since information at an object o

1

can have impact

on an object o

2

. Depending on the \connectivity" of the objects, adding a new

description at an object can thus cause a reclassi�cation of arbitrarily many

other objects.

Parallelization. In principle, all three inference components show some parallel

potential. We will argue, however, that parallelizing propagation is the most

promising. The reason for this is that the basic operations in normalization,

comparison, and classi�cation are rather �ne-grain, compared with the message

passing overhead of MIMD systems.

Object-level propagation, on the other hand, is an ideal candidate for our

parallelization strategy. Each propagation is rather time-consuming and causes

additional propagations which can be straightforwardly parallelized since they

are both independent and monotonic. In the following section we will present

two di�erent strategies for parallelizing propagation.

3 Parallelization Strategies

We begin by noting several relevant properties of object-level propagation. As

already indicated above propagation of information from one object to another

can cause additional propagation to other objects. This kind of `ping-pong' inter-

action terminates only when a `�xed point' is reached and no new information is

produced. Since propagation in Description Logics is monotonic, we can execute

propagations in an arbitrary order, always ending up with the same result. We

will refer to this property as con
uence.

initial propagation

o1

o2

o4

o5

o6

o7

o8

o3

Fig. 1. A group of objects interchanging propagations.

FLEX Data Flow. Figure 3 shows the �rst few stages after the start of a propaga-

tion process. In this example every propagation causes three other propagations.

This creates a `chain reaction', thus increasing the number of `pending propa-

gations' exponentially. This rise will stop as soon as the new information (from

the object tell) becomes more and more integrated into the network.

This results in a smaller `fan out' that leads to a decrease of pending prop-

agations until the �xed point is reached. Figure 3 shows qualitatively the in-

crease and decrease of pending propagations with respect to to propagation

steps. Please note that the steps in the middle part take much longer than the

steps at the sides, because each processor (only a limited number of processors

available) has to compute several propagations.

Given the analysis of the FLEX data
ow, we consider two parallel paradigms

as potential candidates for an implementation: The farm paradigm and the dis-

tributed objects paradigm. In the remainder of this section we brie
y present these

two alternatives. Theoretical considerations and numerical calculations towards

e�ciency and scalability can be found in the detailed analysis in [Bergmann 95].

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

Pending Propagations

Propagation

Partial Idling

100% Load

Steps

Items

Network Size

Fig. 2. Exponential increase of propagations.

Master

Worker 1

Worker 2

Worker 3

Worker N

time

Fig. 3. Timing of the farm communication scheme.

Farm Parallelism. The farm communication structure shown in Fig-

ure 3 is widely used in industrial applications such as image processing

[Burkhard Et Al 94] and �nite element simulation [Diekmann Et Al 94]. It is

theoretically well known and there exists a variety of strategies to distribute

workload evenly across a network.

A farm consists of several parallel processes with a �xed structure: one pro-

cess is called `master' and is responsible to distribute tasks to a group of `worker'

processes which perform their tasks in parallel and return control and results

back to the master. Farm structures are frequently used to parallelize applica-

tions that can be split into subtasks with a priori known duration. Examples

are image processing or �nite element systems. From a theoretical point of view,

there are two potential sources of ine�ciency in this architecture:

1. uneven distribution of workload and

2. a communication bottleneck created by the centralized position of the mas-

ter.

Communicating Objects Parallelism. In the communicating-objects paradigm the

central management institution (master) of the farm parallelism is replaced by

Worker 1

Worker 2

Worker 3

Worker N

time

1

Worker 1

Worker 2

Worker 3

Worker N

1

2

Worker 1

Worker 2

Worker 3

Worker N

4

3

3

Worker 1

Worker 2

Worker 3

Worker N

4

Worker 1

Worker 2

Worker 3

Worker N

2

Fig. 4. Communication events and workload distribution during the �rst two Propa-

gation Stages.

(local) knowledge of all objects about the `addresses' of their neighbors. Objects

communicate directly with each other, in contrast to the centered communication

scheme of the farm. This helps to avoid communication bottlenecks in a network.

The general di�erence between a farm and a network of communicating objects

is the di�erent perspective of parallelism: Within a farm, tasks are distributed;

within the distributed objects scheme, objects are distributed.

This approach appears to be similar to the agent-based paradigm developed

by distributed AI research [Dossier 91]. In contrast to this approach, objects

within FLEX have to be considered elements of a distribution strategy rather

then independently interacting entities. With respect to the de�nition given

in [Bond, Gasser 88] we have to subsume our e�orts here under the �eld of

`distributed problem solving'.

For an e�ective balancing of workload, certain assumptions about tasks and

the computational environment have to be made. In our case, all processors can

be assumed to behave identical and the statistical distribution of the task length

is assumed to be narrow. Uneven distributions of workload can �nally be treated

by special load balancing algorithms (see below).

4 Experimental Results

We chose the 'Parsytec Multicluster II' machine as base for the parallel im-

plementation of FLEX. It consists of 16 processing nodes that each contain an

INMOS T800 Transputer with 4 MByte of RAM. Each Transputer consists of

a RISC processing kernel, a memory interface and 4 DMA driven serial inter-

faces, called 'links'. Each link has a transfer rate of approximately 1.2 MByte/s

and all 4 links can run independently together with the RISK kernel, hardly

a�ecting processing performance (communication delays could be neglected).

This hardware platform is especially suitable to serve as a testbed for parallel

implementations due to its simple architecture and the availability of comfort-

able development environments. However, it does not provide state of the art

computational performance and su�ers substantially from memory restrictions.

SUN

16*T800, 4MByte

1*T800, 1MByte

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

11

4x4

4x3

3x3

3x2

2x2

2x1

Topology 2x1 2p1 2x2 3x2 3x3 4x3 4x4

Processors 3 4 5 7 10 13 17

Workers 1 2 3 5 8 11 15

Fig. 5. Hardware con�guration and working nodes.

Figure 5 shows the topologies used for the tests in this chapter and the num-

ber of available worker nodes. The overhead of 2 processors is due to memory

limitations. Processor 1 could not be used because its 1 MByte RAM is not su�-

cient to hold the FLEX code. Processor 2 is used to hold the 'shell' process that

synchronizes the generation of new objects. Normally this process can be located

somewhere in the network and would not consume any computing performance,

but in this case it had to be separated due to memory restrictions.

The language used to implement Distributed FLEX is a Prolog dialect called

Brain Aid Prolog (BAP). It represents a 'standard' Prolog with parallel library

extensions, implementing a scheme similar to CSP [Hoare 85]. Parallelism and

synchronization is expressed explicitly using the notion of 'processes' and 'mes-

sages'. A process in BAP is a single and independent Prolog instance with a

private database. A message is any Prolog term that becomes exchanged be-

tween two processes. Messages are send and received using the send msg(Dest,

Msg) and rec msg(Sender, Msg) predicates. Message sender and destination are

identi�ed by their 'process id' (PID). Messages are routed transparently through

the network. The order of messages is maintained when several messages are send

from the same sender to the same destination. When a message reaches its des-

tination process, it is stored in a special database, called `mailbox'. Each process

owns its private mailbox in which the messages are stored FIFO.

Although the development of parallel FLEX was greatly simpli�ed by the way

BAP expresses parallelism, it is possible to apply the same parallel techniques

to future FLEX implementation in programming languages such as LISP or C.

The main area of FLEX applications within the KIT research group is Nat-

ural Language Processing (NLP) [Quantz, Schmitz 94]. Unfortunately memory

limitations kept us from using these applications as benchmarks. Instead we im-

itate the structure of our NL applications leading to benchmarks with similar

behavior but much lower memory requirements.

Base of our considerations is the fact that in the NL applications each prop-

agation creates a certain number of propagations to other objects. This results

in an 'avalanche' of propagations, rising exponentially until the systems slowly

reaches a �xed point. The average fan out (the number of propagations following

an initial propagation) is a measure to describe this avalanche e�ect and turned

out to be a major factor in the system performance.

r :< rtop o1 :: r:o3 and r:o2 and r:o8

c1 :< all(r,c2) o2 :: r:o4 and r:o7 and r:o2

c2 :< all(r,c3) o3 :: r:o7 and r:o2 and r:o1

c3 :< all(r,c1) o4 :: r:o1 and r:o8 and r:o6

o5 :: r:o2 and r:o7 and r:o8

o6 :: r:o1 and r:o7 and r:o5

o7 :: r:o3 and r:o8 and r:o4

o8 :: r:o7 and r:o4 and r:o6

o1 :: c1

Fig. 6. A sample benchmark with 8 Objects, 3 Concepts and Fanout 3.

To evaluate the FLEX performance with benchmarks of di�erent sizes, we

created a benchmark generator that is capable of generating randomly connected

networks of objects. These benchmarks maintain a structure similar to our ap-

plication while consuming much less memory resources.

3

(seq) 1 2 3 5 8

c10 3 2 (58) 78 63 55 56 58

c20 3 2 (177) 253 185 159 160 162

Fig. 7. Execution times (seconds) for the farm parallelization.

Figure 7 shows the execution times for the farm benchmarks. The �rst row

contains the benchmark names that are composed by three numbers that indicate

3

[Bergmann 95] analyzes quantitatively the in
uence of the avalanche exponent on

the applicability of parallel execution.

the number of objects, concepts and fanout respectively (for example `c20 5 3'

means that the benchmark consists of 20 objects, 5 concepts and a fan out of

3). The following rows give the execution times with respect to the number of

processors. The `(seq)' �elds gives the reference time of the (original) sequential

version of FLEX.

The parallelization of FLEX using the farm paradigm showed very poor re-

sults. This can be explained by the rather high costs to distribute the system

state out to the workers and to integrate the computation results back into the

system state. Both activities have to be done sequentially, thus slowing down

the parallel execution.

Although there is some potential for optimizing the FARM implementation,

we stopped the development and focused on the distributed-object version of

FLEX.

1 2 3 5 8 11 15

c10 3 2 (1.0) 59 (1.9) 30 (1.8) 32 (3.3) 18 (3.3) 18 (2.8) 21 (3.3) 18

c10 3 3 (1.0) 43 (1.5) 28 (1.5) 28 (2.4) 18 (2.7) 16 (2.5) 17 (2.9) 15

c10 3 4 (1.0) 327 (2.0) 159 (2.3) 141 (3.1) 105 (3.8) 87 (4.4) 74 (4.4) 73

c20 3 2 (1.0) 179 (1.8) 97 (3.0) 59 (3.1) 58 (4.0) 45 (4.8) 37 (4.5) 40

c20 3 3 145 129 58 56 66 51

c20 3 4 240 173 164 70 74 68

c20 5 3 527 355 173 155 141 160

c20 5 4 344 453 411 185 126 189

c40 3 2 314 176 137 105 111 72

c40 3 3 258 231 141 111 87

c40 3 4 569 467 264 319 230

c80 3 2 1032 665 225 200 181

c80 3 3 443 336 266

c80 3 4 947 662 583

Fig. 8. Benchmark Execution Times.

The parallelization of FLEX using the distributed objects paradigm turned

out to be a lot more promising. Figure 8 shows the absolute execution times of

the considered benchmarks. The names of the benchmarks are composed as in

Figure 7.

Note that the execution times in Figure 8 are measured with an accuracy of

�2 seconds. The sequential execution times (entries in the '1' row) for several

benchmarks are not available due to the memory limitations. This means that

it is not possible to calculate the relative speedup in such a line (future tests on

Transputer machines with more memory will �ll these gaps). This is the reason

why we omited the speedup �gures in all but the �rst 4 benchmarks.

The table shows high speedups (e�ciencies > 80%) for all benchmarks, if

the number of objects exceeds the number of processors by a certain factor

(between 5 and 10). This result can be interpreted by the perspective of Section

3, where we saw that network e�ciently is dependent on the number of pending

propagations in the network. If this number is too low, few processing nodes are

busy, resulting in a bad network e�ciency.

Within [Bergmann 95] the quantitative analysis shows that the propagation-

processor ratio is more relevant to system performance than the overhead caused

by message passing.

4

It also indicates how these problems can be overcome,

allowing for even larger networks.

Time (s)

1

3

5

7

Sum

Processor

0

200

400

600

800

Load (%)

Fig. 9. Runtime behavior of distributed FLEX within a 3x3 Network

A major problem for all distributed systems is the balance of load inside

the network. Within distributed FLEX each object represents a potential load.

Unfortunately the presence of objects is only a statistical measure for load,

while the actual distribution depends on runtime conditions. The illustration

in Figure 9 depicts execution of a benchmark with an uneven load distribution.

The Transputers 2 and 4 slow down the overall performance. It is easy to see

that the network is quite busy during the �rst half of the execution time (ca.

75% e�ciency). At the second half, all object servers have terminated, except

two (ca. 25% e�ciency). This leads to a reduction of the overall e�ciency to ca.

50% and explains the variation of the results in Figure 8

The necessary optimization of the uneven distribution of processor load over

the network can be achieved by temporarily 'relocating' objects to other pro-

cessors. Such a mechanism would be capable of reducing overhead time created

by loads remaining on a few processors. We are currently implementing this

optimization.

4

This is valid for Transputer systems with 2..256 processors, 2D matrix topology and

shortest path routing algorithm

5 Conclusion

The results of the parallel implementation of FLEX are in general very satisfying.

We achieved high speedups with benchmarks that are structurally similar to the

real-world applications in natural language processing (> 80% for benchmarks

that �t the size of the network). The e�ciency of execution rises mainly with

the propagation=processor ratio and thus with the application size. This is an

important result because especially large applications are to be considered can-

didates for a parallel implementation. Theoretical considerations [Bergmann 95]

show that there are only few technical limits to the scalability of the distributed

objects implementation.

We have to state that the Transputer system under consideration here is

not applicable to real world problems due to its poor overall performance and

its memory restrictions. Ideal candidates for such implementations are parallel

computers with large (local) memory resources and high communication band-

width. Alternatively, shared-memory multiprocessor workstations ful�ll all re-

quirements for an e�cient parallelization.

We assume that the communication structure of FLEX is similar to many

other applications in Arti�cial Intelligence. In particular, applications involving

complex, forward-chaining inferencing are potential candidates for a paralleliza-

tion based on the distributed-objects approach presented in this paper.

References

[BAP 93] F.W. Bergmann, M. Ostermann, G. von Walter, \Brain Aid Prolog Lan-

guage Reference" Brain Aid Systems, 1993

[Bergmann 95] F.W. Bergmann, Parallelizing FLEX, KIT Report in preparation, TU

Berlin

[Bond, Gasser 88] A. Bond, L. Gasser, \Readings in Distributed Arti�cial Intelli-

gence", Morgan Kaufmann, Los Angeles, CA, 1988

[Brachman Et Al. 91] R. Brachman, D.L. McGuiness, P.F. Patel-Schneider,

L. Alperin Resnick, A. Borgida, \Living with CLASSIC: When and How to Use a

KLONE-like Language", in J. Sowa (Ed.), Principles of Semantic Networks: Explo-

rations in the Representation of Knowledge, San Mateo: Morgan Kaufmann, 1991,

401{456

[Burkhard Et Al 94] H. Burkhard, A. Bienick, R. Klaus, M. Nlle, G. Schreiber,

H. Schulz-Mirbach, \The Parallel Image Processing Sytem PIPS" in R. Flieger,

R. Grebe (eds), Parallelrechner Grundlagen und Anwendung IOS Press, Amsterdam,

Netherlands, 1994, 288{293

[Clark, Gregory 87] K. Clark, S, Gregory, \PARLOG: Parallel Programming in Logic"

in E. Shapiro (ed), Concurrent Prolog The MIT Press, Cambridge, Massachusetts,

1987, 84 { 139

[Diekmann Et Al 94] R. Diekmann, D. Meyer, B. Monien, \Parallele Partitionierung

unstrukturierter Finite Elemente Netze auf Transputernetzwerken" in R. Flieger,

R. Grebe (eds), Parallelrechner Grundlagen und Anwendung IOS Press, Amsterdam,

Netherlands, 1994, 317{326

[Donini Et Al. 91] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, \The Complexity of

Concept Languages", KR'91, 151{162

[Dossier 91] A.C. Dossier, \Intelligence Arti�cielle Distribuee", Bulletin de l'AFIA, 6,

1991

[Hoare 85] C. A. R. Hoare, \Communicating Sequential Processes" Prentice Hall, En-

glewood Cli�s, N.J., USA, 1985

[Kindermann 95] C. Kindermann, Verwaltung assertorischer Inferenzen in terminolo-

gischen Wissensbanksystemen, PhD Thesis (submitted), TU Berlin, 1995

[Owsnicki-Klewe 88] B. Owsnicki-Klewe, \Con�guration as a Consistency Mainte-

nance Task", in W. Hoeppner (Ed.), Proceedings of GWAI'88, Berlin: Springer, 1988,

77{87

[Pontelli, Gupta 94] E. Pontelli, G. Gupta, \Design and Implementation of Parallel

Logic Programming Systems", Proceedings of ILPS'94 Post Converence Workshop

1994

[Quantz, Schmitz 94] J.J. Quantz, B. Schmitz, \Knowledge-Based Disambiguation for

Machine Translation", Minds and Machines 4, 39{57, 1994

[Royer, Quantz 92] V. Royer, J.J. Quantz, \Deriving Inference Rules for Terminolog-

ical Logics", in D. Pearce, G. Wagner (eds), Logics in AI, Proceedings of JELIA'92,

Berlin: Springer, 1992, 84{105

[Royer, Quantz 94] V. Royer, J.J. Quantz, \On Intuitionistic Query Answering in De-

scription Bases", in A. Bundy (Ed.), CADE-94, Berlin: Springer, 1994, 326{340

[Schaerf 94] A. Schaerf, Query Answering in Concept-BasedKnowledge Representation

Systems: Algorithms, Complexity, and Semantic Issues, Dissertation Thesis, Dipar-

timento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", 1994

[Strietzel 94] \Large Eddy Simulation turbulenter Str�omungen auf MIMD-Systemen"

in R. Flieger, R. Grebe (eds), Parallelrechner Grundlagen und Anwendung, IOS

Press, Amsterdam, Netherlands, 1994, 357 - 366

This article was processed using the L

A

T

E

X macro package with LLNCS style

