
Parallelizing Description Logics

Frank W. Bergmann (fraber@cs.tu-berlin.de),

J. Joachim Quantz (jjq@cs.tu-berlin.de),

Projekt KIT-VM11, FR 5-12, Technische Universität Berlin,

1 Introduction

In the last 15 years Description Logics (DL) have become one of the major

paradigms in Knowledge Representation. Whereas in the beginning it was

hoped that DL provide representation formalisms which allowed efficient com-

putation, at least three trends in recent years caused efficiency problems for DL

systems and applications:

� a trend towards expressive dialects;

� a trend towards complete inference algorithms;

� a trend towards large-scale applications.

With the current state of technology it seems not possible to build a DL system

for large-scale applications which offers an expressive dialect with complete in-

ference algorithms. The standard strategy to cope with this dilemma is to restrict

either expressivity, or completeness, or application size.

In [Bergmann, Quantz 95] we investigate an alternative approach, namely a

parallelization of Description Logics. We present two alternative Prolog imple-

mentations of parallelized propagation on a loosely coupled MIMD (Multiple

Instruction Multiple Data) system. In the following we briefly resume the argu-

mentation of this paper and present the experimental results of the implementa-

tions.

2 Inference Components in DL Systems

In this section we briefly sketch the three main inference components of

normalize-compare based DL systems and point out their complexity and their

potential for parallellization.

Subsumption Checking. To test subsumption between two terms, both terms

are first normalized and then structurally compared. The format of normalization

rules depends on the expressiveness of the DL dialect. For the purpose of this

1



paper it is sufficient to consider normalforms as sets of atoms and normalization

rules as having the form

�

1

; : : : ; �

n

* �

i.e. if the atoms �
1

; : : : ; �

n

are contained in a normalform, then � is added to this

normalform.

Classification. When processing the term introductions, each term name is

classified, i.e. compared with all previously introduced names. As a result sub-

sumption hierarchies for concepts and roles are obtained, which are directed

acyclic graphs.

Propagation. The two reasoning components described so far are usually

called terminological reasoning. We will now turn our attention towards asser-

tional reasoning, i.e. reasoning on the object level. The main difference between

terminological and assertional reasoning is that the former is inherently local,

whereas the latter is inherently global. In principle we can distinguish between

a local phase and a nonlocal phase in object-level reasoning.

In the local phase we determine for an object the most specific concept it in-

stantiates. This can be done by using the standard normalize and compare pred-

icates and the search for direct supers in the classification component. Thus we

normalize the description of an object thereby obtaining a normal form and com-

pare it with the normal forms of the concepts in the hierarchy. In addition to this

standard classification we also have to apply DL rules when processing objects.

This is achieved by applying all rules whose left-hand sides subsume the ob-

ject’s normal form. After this application the normal form is again normalized

and classified until no new rules are applicable.

In the nonlocal phase we have to propagate information to other objects. For

illustration consider the following propagation rules:

o
1

:: all(r,c) & r:o
2

* o
2

:: c

o
1

:: r:o
2

& atmost(1,r), o
2

:: c * o
1

:: all(r,c)

o
1

:: r
1

:o
2

, o
2

:: r
2

:o
3

* o
1

:: r
1

comp r
2

:o
3

o
1

:: r:o
2

* o
2

:: inv(r):o
1

We call these rules nonlocal since information at an object o
1

can have impact on

an object o
2

. Depending on the “connectivity” of the objects, adding a new de-

scription at an object can thus cause a reclassification of arbritrarily many other

objects.

Parallelization Strategies. In principle, all three inference components show

some parallel potential. We claim, however, that parallelizing propagation is the

most promising [Bergmann 95]. The reason for this is that the basic operations

in normalization, comparison, and classification are rather fine-grain, compared

with the message passing overhead of MIMD systems. Object-level propaga-

tion, on the other hand, is an ideal candidate for our parallelization strategy. Each

propagation is rather time-consuming and causes additional propagations which

2



can be straightforwardly parallelized since they are both independent and mono-

tonic. In the following section we will present two different strategies for paral-

lelizing propagation.

We begin by noting several relevant properties of object-level propagation.

As already indicated above propagation of information from one object to an-

other can cause additional propagation to other objects. This kind of ‘ping-pong’

interaction terminates only when a fixed point is reached an no new information

is produced.

During this process, the number of propagation under consideration rises ex-

ponentially with respect to the connectivity between objects. This ‘chain reac-

tion’ will stop as soon as the new information (from the object tell) becomes

more and more integrated into the network. This results in a smaller ‘fan out’

that leads to a decrease of pending propagations until the fixed point is reached.

Given this analysis we consider two parallel paradigms as potential candi-

dates for an implementation:

� The farm paradigm consists of one central process ‘master’ that coordi-

nates several distributed ‘worker’ processes. The initial task is split by the

master into several subtasks that are evenly distributed among the workers

that process their tasks and return the results to the master.

� In the communicating-objects paradigm the central management institu-

tion (master) of the farm parallelism is replaced by (local) knowledge of

all objects about the addresses of their neighbours. Objects communicate

directly with each other, in contrast to the centred communication scheme

of the farm. This helps to avoid communication bottlenecks in a network.

3 Experimental Results

We chose the ’Parsytec Multicluster II’ machine as base for the parallel imple-

mentation of FLEX [Quantz et al. 94]. It consists of 16 processing nodes that

each contain an INMOS T800 Transputer with 4 MByte of RAM. Each Trans-

puter consists of a RISC processing kernel, a memory interface and 4 DMA

driven serial interfaces of 1.2 MBytes/s each.

The language used to implement Distributed FLEX is a Prolog dialect

called Brain Aid Prolog (BAP). It represents a ’standard’ Clocksin & Mellish

[Clocksin, Mellish 84] Prolog with parallel library extensions, implementing a

scheme similar to CSP [Hoare 85]. Parallelism and synchronization is expressed

explicitly using the notion of ’processes’ and ’messages’. A process in BAP is

a single and independent Prolog instance with a private database. A message

is any Prolog term that becomes exchanged between two processes. Messages

are send and received using the send msg(Dest, Msg) and rec msg(Sender, Msg)

predicates. Message sender and destination are identified by their ’process id’

(PID). Messages are routed transparently through the network. The order of

messages is maintained when several messages are send from the same sender

to the same destination. When a message reaches its destination process, it is

3



(seq) 1 2 3 5 8

c10 3 2 (58) 78 63 55 56 58

c20 3 2 (177) 253 185 159 160 162

Figure 1: FARM Execution times (seconds).

1 2 3 5 8 11 15

c10 3 2 (1.0) 59 (1.9) 30 (1.8) 32 (3.3) 18 (3.3) 18 (2.8) 21 (3.3) 18

c10 3 3 (1.0) 43 (1.5) 28 (1.5) 28 (2.4) 18 (2.7) 16 (2.5) 17 (2.9) 15

c10 3 4 (1.0) 327 (2.0) 159 (2.3) 141 (3.1) 105 (3.8) 87 (4.4) 74 (4.4) 73

c20 3 2 (1.0) 179 (1.8) 97 (3.0) 59 (3.1) 58 (4.0) 45 (4.8) 37 (4.5) 40

c20 3 3 145 129 58 56 66 51

c20 3 4 240 173 164 70 74 68

c20 5 3 527 355 173 155 141 160

c20 5 4 344 453 411 185 126 189

c40 3 2 314 176 137 105 111 72

c40 3 3 258 231 141 111 87

c40 3 4 569 467 264 319 230

c80 3 2 1032 665 225 200 181

c80 3 3 443 336 266

c80 3 4 947 662 583

Figure 2: Distributed Objects Execution Times (seconds).

stored in a special database, called ’mail box’. Each process owns its private

mail box in which the messages are stored FIFO.

The main area of FLEX applications within the KIT research group is Natu-

ral Language Processing (NLP). Unfortunately memory limitations kept us from

using these applications as benchmarks. Instead we imitate the structure of our

NL applications leading to benchmarks with similar behaviour but much lower

memory requirements.

Figure 1 shows the execution times for the farm benchmarks. The first row

contains the benchmark names that are composed by three numbers that indicate

the number of objects, concepts and fanout respectively (for example ‘c20 5 3’

means that the benchmark consists of 20 objects, 5 concepts and a fan out of

3). The following rows give the execution times with respect to the number of

processors. The ‘(seq)’ fields gives the reference time of the (original) sequential

version of FLEX.

The parallelization of FLEX using the farm paradigm showed rather poor

results (efficiencies < 50%). This can be explained by the rather high costs to

distribute the system state out to the workers and to integrate the computation

results back into the system state. Both activities have to be done sequentially,

thus slowing down the parallel execution.

The distributed objects parallelization results turns out to be a lot more

promising. The table in Figure 2 1 shows high speedups (efficiencies> 80%) for

all benchmarks, if the number of objects exceeds the number of processors by a

1The missing figures in the lower left corner are due to memory restrictions

4



certain factor (between 5 and 10). This result can be interpreted by the perspec-

tive that the network efficiently is mainly dependent on the number of pending

propagations in the network [Bergmann, Quantz 95]. If this number is too low,

few processing nodes are busy, resulting in an uneven diestribution of workload.

4 Conclusion

The results of the parallel implementation of FLEX are in general very satisfy-

ing. We achieved high speedups with applications structurally similar to natural

language processing. The efficiency of execution is mainly dependent on the

propagation/processor ratio and thus with the application size. This is an impor-

tant result because especially large applications are to be considered candidates

for a parallel implementation. Theoretical considerations [Bergmann 95] show

that there are only few technical limits to the scalability of the distributed objects

implementation.

We assume that the communication structure of FLEX is similar to many

other applications in Artificial Intelligence. In particular, applications involving

forward-chaining inferencing and agenda mechanisms are potential candidates

for a parallelization based on the our aproach, due to structural similarities of

data and control flow.

References

[BAP 93] F.W. Bergmann, M. Ostermann, G. von Walter, “Brain Aid Prolog

Language Reference”, Brain Aid Systems, 1993

[Bergmann 94] F.W. Bergmann, “Data Parallelism in Description Logics”,

Transputer Anwender Treffen’ 94, 12–14

[Bergmann 95] F.W. Bergmann, “Parallelisierung eines Wissensrepräsentation-

ssystems”, (in preparation), TU Berlin, 1995

[Bergmann, Quantz 95] F.W. Bergmann, J.J. Quantz “Parallelizing Description

Logics” (submitted for publication,

http://www.cs.tu-berlin.de/ fraber/papers/BergmannQuantz95.html)

[Bond, Gasser 88] A. Bond, L. Gasser, “Readings in Distributed Artificial In-

telligence”, Morgan Kaufmann, Los Angeles, CA, 1988

[Clocksin, Mellish 84] W.F. Clocksin, C.S. Mellish, “Programming in Prolog”,

Springer Verlag, Berlin, 1984

[Dossier 91] A.C. Dossier, “Intelligence Artificielle Distribuee”, “Bulletin de

l’AFIA”, 6, 1991

[Hoare 85] C. A. R. Hoare, “Communicating Sequential Processes”, Prentice

Hall, Englewood Cliffs, N.J., USA, 1985

[Quantz et al. 94] J.J. Quantz, G. Dunker, V. Royer, “Flexible Inference Strate-

gies for DL Systems”, in F. Baader, M. Lenzerini, W. Nutt, P. F. Patel-

Schneider (eds), International Workshop on Description Logics, DFKI Re-

port D-94-10, DFKI Saarbrücken, 27–30, 1994

5


