
KIT REPORT 1241

The FLEX System

J. Joachim Quantz, Guido Dunker,
Frank Bergmann, Ivonne Kellner

TECHNISCHE UNIVERSITÄT BERLIN

PROJEKT KIT, FR 5–12

FRANKLINSTR. 28/29, W–1000 BERLIN 10

e-mail: flex@cs.tu-berlin.de

December 1995

1This work was funded by the German Federal Ministry of Education, Science, Re-
search and Technology (BMBF) in the framework of the Verbmobil Project under Grant
01 IV 101Q8. The responsibility for the contents of this study lies with the authors.

Abstract

This report describes the Description Logic (DL) systemFLEX. It consists of a
brief overview over the field of Description Logics in general and the character-
istics ofFLEX, a tutorial for theFLEX system, a brief description of the inference
algorithms, and an appendix containing a syntax overview, the formal semantics,
a reference manual, and an installation guide.

In a sense, theFLEX system can be seen as an extension of theDL system
BACK. The main differences are thatFLEX supports full disjunction and negation,
weighted defaults, situated object descriptions, term-valued features, and flexible
inference strategies. On the other hand,FLEX does not support some of the func-
tionality provided by theBACK system, such as revision, for example.

The FLEX system is developed in the project KIT-VM11, which is part of the
VERBMOBIL project, a project concerned with face-to-face dialogue interpret-
ing funded by the German Ministry of Education, Science, Research and Tech-
nology. Our main criteria for designing theFLEX system are therefore based on
requirements arising from the application of semantic disambiguation in Machine
Translation.

Contents

1 Introduction 1

2 The DL System FLEX 2
2.1 Description Logics . 2
2.2 Characteristics of FLEX . 9

3 Tutorial 14
3.1 The Basics . 15
3.2 Advanced Interactions . 26
3.3 Weighted Defaults . 33

4 Inference Algorithms 38
4.1 Computing Subsumption . 38
4.2 Computing Default Spaces . 48

5 Future Work 54

References 60

A How To Install the FLEX System 64

B FLEX Syntax 66

C FLEX Semantics 71
C.1 The Basic DL . 71
C.2 A Preferential Semantics for Weighted Defaults 76
C.3 A Proof Theory for Weighted Defaults 79

D FLEX Manual 85
:</2 . 86
:=/2 . 87
=>/2 . 88
� n �>/2 . 89

i

::/2 . 90
<<=/2 . 92
<>/2 . 93
?</2 . 94
?:/2 . 95
�=/2 . 96
:/2 . 97
../2 . 98
all . 99
and . 100
atleast . 101
atmost . 102
cbot . 103
comp . 104
concepts. 105
ctop . 106
dir subs . 107
dir supers . 108
disjoint . 109
domain . 110
equivalent . 111
equivalents . 112
exactly . 113
feature . 114
fillers . 115
filter . 116
flexask . 117
flexdump . 118
flexget . 119
flexinit . 121
flexload . 122
flexmacro . 123
flexread . 124
flexstate . 125
flextell . 127
ge, gt . 128
help . 129
incoherent . 130
initial . 131
inv . 132
instances . 133
le, lt . 134

ii

iii

msc . 135
no . 136
not . 137
number . 138
oneof . 139
or . 140
range . 141
satisfies . 142
some. 143
string . 144
subs . 145
subsumes . 146
supers . 147
term valued . 148
the . 149
tvf filler . 150

Chapter 1

Introduction

In this report we describe the Description Logic (DL) systemFLEX. Our main
goal is to explain the functionality ofFLEX to users of the system. Chapter 3
therefore contains atutorial explaining the most important features of theFLEX

system by means of a small modeling example. The appendix contains anin-
stallation guide(Chapter A), asyntax overview(Chapter B), aformal semantics
(Chapter C) and areference manual(Chapter D), in which all language constructs
supported byFLEX are described in detail.

In addition to this rather application-oriented presentation, we also include a
chapter describing the field ofDL in general and the characteristics ofFLEX in
particular (Chapter 2), as well as a chapter on implementation issues (Chapter 4).
Finally, Chapter 5 contains an overview over future developments envisaged for
FLEX.

The FLEX system is developed in the project KIT-VM11, which is part of the
VERBMOBIL project, a project concerned with face-to-face dialogue interpret-
ing funded by the German Ministry of Education, Science, Research and Tech-
nology. Our main criteria for designing theFLEX system are therefore based on
requirements arising from the application of semantic disambiguation in Machine
Translation. We would like to thank NManfred Gehrke from Siemens and the
other members of KIT-VM11, Uwe K¨ussner, Juliana Lagunov, Nina Ruge, Birte
Schmitz,and Manfred Stedefor their suggestions concerning the design ofFLEX

interface language and for their patience in working with unstable versions of
FLEX.

Many ideas underlying the design and implementation of theFLEX system
are based on discussions and experiences from theBACK project. We also used as
much of the theBACK manual [Hoppe et al. 93] as possible. We would therefore
like to thank Martin Fischer, Thomas Hoppe, Carsten Kindermann, and Albrecht
Schmiedel. Thanks are also due to Bob MacGregor for many helpful discussions
on implementation issues in theLOOM system.

1

Chapter 2

The DL System FLEX

2.1 Description Logics

The Roots of Description Logics

The field of Knowledge Representation (KR) originated in the late 1960’s and
found its first paradigm inSemantic Networksas proposed in [Quillian 68]. Quil-
lian assumed semantic memory to be general memory, underlying such diverse
cognitive activities as language understanding and perception. The intimate con-
nection between his work and research in psychology and linguistics is typical
for this early phase ofKR—it was assigned the task of modeling the human abil-
ity to use information for intelligent activities such as natural language under-
standing, perception, planning, etc. Consequently, psychological experiments
were conducted to determine the cognitive adeqacy of the proposed formalisms
[Collins, Quillian 69].

The second paradigm ofKR was created by Minky’s seminal paper onFrames
[Minsky 75]. Minsky’s original goal was to account for the effectiveness of
common-sense reasoning in real-world tasks — to a large degree motivated by
“human” models borrowed from psychology or text linguistics.

Though not obvious on first sight, there is a close resemblance between Se-
mantic Nets and Frames. A semantic net consists of nodes that are connected by
labelled links. Some of these links, the so called ISA-Links indicate specializa-
tion, while others stand for other relations holding between the nodes. A key idea
of Semantic Nets is the notion ofinheritance: the links attached to a node are in-
herited to its specializations. Due to their graphical notation and the inheritance
principle, Semantic Nets thus allow a compact representation of the complex de-
pendencies between pieces of information.

The frames correspond to the nodes in a semantic net, the ISA-Link is repre-
sented by the subframe relation, and the labelled links are modeled byslotsand
fillers (a slot correponds to the labelled link, the filler to the node to which the

2

2.1. DESCRIPTION LOGICS 3

link points). Note that inheritance from frames to subframes mirrors the inheri-
tance via ISA-Links in Semantic Networks.

Though both representation formats are thus very similar, there are also im-
portant differences. Semantic Nets are more appropriate for conveying the gen-
eralstructureof the represented information, especially interconnections and de-
pendencies; a frame representation, on the other hand, focuses not so much on
the overall structure but on the basic units and the information locally associated
with each frame. Note that this difference between both formalisms is not an is-
sue of expressive adequacy but one of structural adequacy. Both Semantic Nets
and Frames are ancestors of Description Logics and all three approaches toKR

have much in common. There are, however, essential characteristics ofDL that
distinguish them from their ancestors—the basic difference concerns the attitude
towards theoretical foundations and towards the question of what is constitutive
for a representationformalism.

In the second half of the 1970’s representation languages from the area of Se-
mantic Nets, Frames, or Scripts were seriously attacked in a number of papers for
their apparent lack of formal rigor (e.g., [Woods 75] and [Hayes 77]). The key
issue was the relationship between Knowledge Representation and Formal Logic.
Note that Quillian located his semantic memory between natural languages and
symbolic logic [Quillian 68, p. 230]. This opinion clearly implies that Semantic
Nets are superior to Predicate Logic with respect to expressive adequacy.

One apparent problem we face here is the missing entailment relation for Se-
mantic Nets or Frames—how do we know whether a semantic net contains more
information than another? Of course, this boils down to the question of how we
know what exactly a semantic net or a frame means?

Hayes answers this question by mapping frame definitions intoFOL formulae
[Hayes 80], and thus shows that Frames are not superior toFOL with respect to
expressive adequacy. Two remarks seem in order here. First, the above argumen-
tation is, at least to a certain degree, circular—we do not know what formulae in
a formalism mean unless we define a notion of entailment; given such a notion of
entailment we have a logic; thus all representation formalisms are logics. Second,
if representation formalisms are reducible toFOL it does not mean that they are
dispensable. It just means that they are not superior toFOL with respect to ex-
pressive adequacy, but they stil can be with respect to structural or computational
adequacy. Reducibility toFOL is rather an advantage because it guarantees appli-
cability of the tools for theoretical investigations developed in Formal Logic. To
draw an analogy to Programming Languages—nobody would discard a program-
ming language just because it can be compiled into an already existing language.
On the contrary, the new language has to be compiled into Machine Code ulti-
mately, and it is confined to the limits of theoretical computability as expressed
by Turing Machines, the Lambda Calculus, etc.

Brachman endorsed the logic-oriented view on Knowledge Representation in

4 CHAPTER 2. THE DL SYSTEM FLEX

his early papers on Semantic Nets [Brachman 77, Brachman 79]. Instead of for-
malizing Semantic Nets in terms ofFOL, however, he examined in detail, what
the constructs used in them were supposed to represent. There are two important
results of his investigations: for one thing, Brachman proposes to distinguish sev-
eral levels in the discussion of knowledge representation systems, namely theim-
plementational, thelogical, theepistemological, theconceptual, and thelinguistic
level [Brachman 79, p. 28ff]. In addition, he proposesKL-ONE as a formalism on
the epistemological level and presents its basic elements orepistemological prim-
itives.

An overview over the basic features of theKL-ONE formalism circulated in
the beginning of the 80’s and was finally published in [Brachman, Schmolze 85].
In the following years severalDL systems have been developed incorporating dif-
ferent dialects but similar with respect to the underlying representation philoso-
phy. The respective formalisms and systems were calledKL-ONE alike systems,
term subsumption systems, concept logics, terminological logics, and description
logics.

Theoretical Investigations

Though Brachman mentioned the importance of a formal semantics in his papers,
it took some years before Description Logics were thoroughly investigated from
a theoretical point of view. Schmolze and Israel presented a formal semantics for
KL -ONE in [Schmolze, Israel 83]. One year later, Brachman and Levesque raised
the question of tractability ofKR formalisms [Brachman, Levesque 84]. In the
late 1980’s several results were obtained concerning the tractability of different
DLs. In order to understand these results we now have to take a closer look on the
theoretical foundations ofDL.

In DL one typically distinguishes betweentermsandobjectsas basic language
entities from which three kinds of formulae can be formed:definitions, descrip-
tions, andrules (see the sample model on page 6 below). A definition has the
form tn

:
= t and expresses the fact that the name tn is used as an abbreviation for

the term t. A list of such definitions is often calledterminology(hence also the
name Terminological Logics). AllDL dialects provide two types of terms, namely
concepts(unary predicates) androles (binary predicates), but they differ with re-
spect to the term-forming operators they contain. Common concept-forming op-
erators are: conjunction (c1 and c2), disjunction (c1 or c2), and negation (not(c)),
as well as quantified restrictions [Quantz 92a] such as value restrictions (8r:c),
which stipulate that all fillers for a role r must be of type c, or number restrici-
tions (�n r:c or�n r:c), stipulating that there are at least or at mostn role-fillers
of type c for r. Role-forming operators are, besides conjunction, disjunction, and
negation, role composition (r1.r2), transitive closure (r+), inverse roles (r�) and
domain or range restrictions (cjr or rjc). In a description, an object is described

2.1. DESCRIPTION LOGICS 5

as being an instance of a concept (o :: c), or as being related to another object by
a role (o1 :: r:o2). Rules have the form c1) c2 and stipulate that each instance of
the concept c1 is also an instance of the concept c2.

A formal syntax and semantics forDL is given in Chapter C. Note that
DL are subsets of First-Order Logic (with Equality), which can be shown eas-
ily by specifying translation functions fromDL formulae into FOL formulae
[Schmolze, Israel 83, Royer, Quantz 92].

To summarize these theoretical issues, we can say thatDLs are characterized
by a particular stance towards the essentials ofKR-formalisms—in order to call
something aKR formalism

1. it has to be a formal language in the sense that there is a formal specification
of its syntax;

2. it has to have a formal semantics which defines an entailment relation on
formulae;

3. there have to be (efficient) algorithms computing entailment between for-
mulae.

Implemented Systems and Applications

From the beginning on, research inDL was praxis-oriented in the sense that the
development ofDL systems and their use in applications was one of the pri-
mary interests. In the first half of the 1980’s several systems were developed that
might be called in retrospectionfirst-generationDL systems. These systems in-
cludeKL-ONE [Brachman, Schmolze 85],NIKL [Schmolze, Mark 91],KANDOR

[Patel-Schneider 84],KL -TWO [Vilain 85], KRYPTON [Brachman et al. 83],ME-
SON [Edelmann, Owsnicki 86], andSB-ONE [Kobsa 89].

In the second half of the 1980’s three systems were developed which are still
in use, namelyBACK, CLASSIC, andLOOM. TheLOOM system [MacGregor 91]
is being developed at USC/ISI and focuses on the integration of a variety of pro-
gramming paradigms aiming at a general purpose knowledge representation sys-
tem. CLASSIC [Brachman et al. 91] is an ongoing AT&T development. Favor-
ing limited expressiveness for the central component it is attempted to keep the
system compact and simple so that it potentially fits into a larger, more expres-
sive system. The final goal is the development of a deductive, object-oriented
database manager.BACK [Hoppe et al. 93] is intended to serve as the kernel rep-
resentation system of AIMS (Advanced Information Management System), in
which tools for semantic modeling, defining schemata, manipulating data, and
querying, will be replaced by a single high-level description interface. To avoid
a “tool-box-like” approach, all interaction with the information repository occurs
through a uniform knowledge representation system, namelyBACK, which thus

6 CHAPTER 2. THE DL SYSTEM FLEX

acts as a mediating layer between the domain-oriented description level and the
persistency level. The cited systems share the notion ofDL knowledge represen-
tation as being the appropriate basis for expressive and efficient information sys-
tems [Patel-Schneider 87]. In contrast to the systems of the first generation, these
second generationDL systems are full-fledged systems developed in long-term
projects and used in various applications.1

The systems of the second generation take an explicit stance to the problem
that subsumption determination is at least NP-hard or even undecidable for suf-
ficiently expressive languages:CLASSIC offers a very restrictedDL and almost
complete inference algorithms, whereasLOOM provides a very expressive lan-
guage but is incomplete in many respects. Recently, theKRIS system has been de-
veloped, which uses tableaux-based algorithms and provides complete algorithms
for a very expressiveDL [Baader et al. 92].KRIS might thus be the first represen-
tative of a third generation ofDL systems, though there are not yet enough expe-
riences with realistic applications to judge the adequacy of this new approach.2

In order to get a better understanding of these systems let us take a look at
the modeling scenario assumed for applications. An application inDL is basi-
cally a domain model, i.e. a list of definitions, rules, and descriptions (a set of
DL-formulae�). Consider the highly simplified domain model below, whose net
representation is shown in Figure 2.1. One role and five concepts are defined,
out of which four are primitive (only necessary, but no sufficient conditions are
given). Furthermore, the model contains one rule and four object descriptions.

product :< anything
chemical product :< product

biological product :< product & not(chemical product)
company :< some(produces,product)
produces :< domain(company)

chemical company := company &
all(produces,chemical product)

some(produces,chemical product)=> high risk company
toxipharm :: chemical product

biograin :: biological product
chemoplant :: chemical company

toxiplant :: atmost(1,produces) &
produces:toxipharm

1In addition to these general purposeDL systems, some special-purpose systems, such as
QUERELLE [Decio et al. 91],K-REP, or KRAPFEN were developped in the second half of the
1980’s.

2The missing constructiveness of the refutation oriented tableaux algorithms (see Section 4.1)
leads to problems with respect to object recognition and retrieval (see [Kindermann 95]).

2.1. DESCRIPTION LOGICS 7

toxiplant toxipharm biograin

chemical
company

chemical
 product

biological
 product all

 produces

company product
 1..in

produces

 1..1

produces

chemoplant

 1..in produces

conc_1high risk
company

Figure 2.1: The net representation of the sample domain. ‘conc1’ is the concept
some(produces,chemical product).

In DL, such a model is regarded as a set of formulae�. Given the formal seman-
tics of a DL, such a set of formulae will entail other formulae, i.e., there is an
entailment relation� j= . Now the service provided byDL systems is basically
to answer queries whether some formula is entailed by a model�. The follow-
ing list contains examples for the types of queries that can be answered by aDL

system:

� � j= t1 v t2
Is a term t1 more specific than a term t2, i.e., is t1 subsumedby t2? In the
sample model, the concept ‘chemical company’ is subsumed by ‘high risk
company’, i.e., every chemical company is a high risk company.

� � j= t1 and t2 v nothing
Are two terms t1 and t2 incompatible or disjoint? In the sample model, the
concepts ‘chemical product’ and ‘biological product’ are disjoint, i.e., no
object can be both a chemical and a biological product.

� � j= o :: c
Is an object o an instance of concept c (object classification)? In the sample
model, ‘toxiplant’ is recognized as a ‘chemical company’.

8 CHAPTER 2. THE DL SYSTEM FLEX

� � j= o1 :: r:o2
Are two objects o1,o2 related by a role r, i.e., is o2 a role-filler for r at o1?
In the sample model, ‘toxipharm’ is a role-filler for the role ‘produces’ at
‘toxiplant’.

� � j= X :: c
Which objects are instances of a concept c (retrieval)? In the sample model,
‘chemoplant’ and ‘toxiplant’ are retrieved as instances of the concept ‘high
risk plant’.

� � [f�g j= ?

Is a description� inconsistent with the model (consistency check)? The de-
scription ‘chemoplant :: produces:biograin’ is inconsistent, wrt the sample
model, i.e., ‘biograin’ cannot be produced by ‘chemoplant’.

This very general scenario can be refined by considering generic application tasks
such asinformation retrieval, diagnosis, or configuration.

Extending Description Logics

Research inDL was originally concerned with the set of epistemological primi-
tives presented in [Brachman, Schmolze 85], but the interest in extendingDL to
integrate results from other fields ofAI increased considerably in the last years.
The integration of rule-based reasoning intoDL was suggested very early in
[Owsnicki-Klewe 88]. It turned out, however, that the so-called implication-links
or rules which have been implemented inBACK, CLASSIC, andLOOM, differ from
the rules of rule-based system with respect to their logical, monotonic character
and thus function more as constraints then as production rules [Schild 89]. As a
consequence, no conflict resolution strategies have to be devised. Thus the inte-
gration of rules kept very close to the original paradigm ofDL.

The epistemological primitives ofKL -ONE were meant to be ontologically
neutral, i.e., it should be possible to use them for the definition of concepts be-
longing to arbitrary ontological categories. It became quickly obvious, how-
ever, that certain ontological areas need additional term-forming operators which
specifically reflect the ontological structure of these areas. Schmiedel proposed
an integration ofDL, Shoham’s temporal logic, and Allen’s interval calculus to
support the modeling of temporal knowledge in aDL system [Schmiedel 90].
Schmiedel’s ideas were taken up by Schild, who developed a restricted tense-
logical extension ofDL, which constituted an optimal tradeoff between expres-
siveness and computational complexity [Schild 91]. An integration of this tense-
logical extension into theBACK system is described in [Fischer 92].

Another topic of discussion concerned the integration of defeasible knowl-
edge intoDL. In the traditional framework ofDL all information is regarded as

2.2. CHARACTERISTICS OF FLEX 9

strict. This is obviously a restriction much too strong for most domain: most
of our knowledge is expressable only as rules that allow for exceptions or as
rules with a certain degree of reliability. In order to capture this kind of in-
formation the integration of probabilistic rules [Heinsohn, Owsnicki-Klewe 88],
[Heinsohn 91] and of defaults [Baader, Hollunder 92], [Quantz, Royer 92],
[Baader, Hollunder 93] was suggested.

Other envisaged extensions ofDL include the integration of generalized quan-
tifiers [Quantz 92a], of second-order constructs [Quantz 92b], of part-whole re-
lations and collective entities in general [Franconi 92], of epistemic operators
[Donini et al. 92], and of test/compute functions [Kort¨um 93].

Some of these extensions have been integrated in theFLEX system, namely
weighted defaults and test-compute functions. An integration of epistemic opera-
tors is envisaged for the future.

2.2 Characteristics of FLEX

Though theFLEX system follows the generalDL paradigm it possesses a number
of characteristics not shared by allDL systems:

1. an expressive term languagecomprising qualifying number restrictions,
role inversion and composition, role value maps, disjunction and negation;

2. term-valued features, which behave similar to features having complex-
type values in Unification Grammars;

3. situated descriptionswhich allow the representation of alternative states of
affair and form the basis for default reasoning;

4. weighted defaultsas proposed in [Quantz 93] and formally investigated in
[Quantz, Suska 94];

5. flexible inference strategies.

In the following we will briefly sketch these characteristics. If you are not fa-
miliar with DL, you will probably have difficulties in understanding some of the
(technical) remarks. The tutorial in the next chapter will explain in detail how
these characteristics ofFLEX are to be used in an application.

Types and Objects

One major difference betweenDL and the feature logics used in Unification
Grammars (e.g. [Carpenter 92]) is the fact that the former distinguish between
objects and types, whereas the latter only deal with types. This is reflected in the

10 CHAPTER 2. THE DL SYSTEM FLEX

respective syntactic formats by the fact thatDL provide two different constructs
for constraining role fillers, namely r:o, on the one hand, andall(r,c), some(r,c),
or the(r,c) on the other hand.UG only provide the constructor f:v, where ‘v’ can
be an atomic value or a complex feature structure. It should be noted that the
object level ofDL, which is “missing” inUG, allows a straightforward persistent
storage of objects and their types. Furthermore, it is the basis for the integration
of epistemic operatorsandweighted defaultsinto DL.

There is, however, one disadvantage of the distinction between types and ob-
jects in DL. In standardDL only objects can be fillers of roles. But certain
features, e.g. ‘hastopic’, rather are meant to take concepts as role fillers. Fur-
thermore we would expect hastopic:c1 to be more specific than hastopic:c2 if
c1 is subsumed by c2. We could model this by writingthe(hastopic,c1) in-
stead of hastopic:c1, but this would imply that we have an object filling the role
‘has topic’ which is of type c1.

A correct treatment of this problem would involve a higher-order extension
to DL, allowing relations whose arguments can be concepts or roles. Instead of
providing such an extension, we integrated term-valued features into theFLEX

system. It should be noted that these features “solve” the problem on a syntactic
level only, i.e. fc:c will behave likethe(fc,c), except that no terms likeatleast(n,fc)
or fc:o are allowed.

The semantics for fc and fr will yield the following subsumptions:

* ft:t1 u ft:t2
:
= ft : (t1 u t2)

* ft : ?
:
= ?

t1 v t2 * ft:t1 v ft:t2

Given this basic functionality there is one further extensions allowing to make use
of term-valued features.FLEX contains a special construct relating term-valued
features to the “normal” features as proposed in [Quantz 92b]:

o1 :: fc:cu f:o2 u f2fc in s * o2 :: c in s

This construct can be used to express the constraint that the filler of a role is an
instance of the filler of a term-valued feature.

Situated Descriptions

Situated descriptions can be used to represent alternative states of affair, to model
backtracking, and to perform reasoning by cases. The basic idea is to describe
objectsrelative to asituation. Whereas standardDL support only a single ABox
(i.e. set of object descriptions),FLEX thus allows partitioning of the ABox into
several situations. This is expressed by saying

2.2. CHARACTERISTICS OF FLEX 11

o :: c in s.

instead of

o :: c.

Note that the latter tell is also accepted by the system and is interpreted as being
a description holding in the built-in situation ‘initial’.

Note that situations are not necessarily unrelated but can stand in the extension
relation. Intuitively, a situation s2 extends s1 if all object descriptions valid in s1
are also valid in s2.

Assume that we have the following description:

o :: (f:v1 t f:v2) u c in s1.

we can then extend the situation s1 by situations s2 and s3:

s1 <<= s2.
s1 <<= s3.

We can now use the situations s2 and s3 to perform reasoning by cases:

o :: f:v1 in s2.
o :: f:v2 in s3.

All formulae valid both in s2 and in s3 are also valid in s1.
In general, situated descriptions allow the representation of alternative states

of affairs and can also be used to realize backtracking. Suppose you are incre-
mentally describing an object, e.g. in a configuration application. Using situated
descriptions allows you to jump back to an intermediate state simply by using the
respective situation:

o :: c1 in s1.
s1 <<= s2.
o :: c2 in s2.

s2 <<= s3.
o :: c3 in s3.

If it turns out that the last tell was not appropriate, you can create another exten-
sion of s2 to continue:

s2 <<= s4.
o :: c4 in s4.

12 CHAPTER 2. THE DL SYSTEM FLEX

In order to give a formal semantics for situated descriptions we have to change
the nature of interpretation functions. Instead of mapping concepts into subsets
of D, they now map pairs of concepts and situations into subsets ofD. Thus the
interpretation of a concept can vary from one situation to another. The constraints
on interpretation functions then look like:

[[t1 and t2; s]]I;W = [[t1; s]]I;W \ [[t2; s]]I;W

and the definition of satisfaction of situated descriptions is rewritten as

M j= o :: c in s iff [[o]]I 2 [[c; s]]I;W

Finally, we need a formal semantics of the notion ofextensionsof a situation.
What is obviously intended by this notion is that if s1 � s2 then o :: c in s1 im-
plies o :: c in s2. Note that this is calledpersistencein the context of Situation
Semantics [Barwise, Perry 83].

The notion of extensions can be formally defined by using sets of interpreta-
tion functions as they are used for the semantics of the epistemic operatork:

M j= hsit-extensionis1s2 iff 8t[[kt; s1]]I;W � [[kt; s2]]I;W

Note that this approach to persistency is justified since we only have situated de-
scriptions of individuals. Clearly, we would not want quantified descriptions like
‘all(c1,c2) in s1’ to be persistent (we might learn about an object o not present in
s1 which is a c1 but not a c2). Similarly, epistemic formulae behave nonmonoton-
ically and are not persistent. The above definition will therefore be restricted to
nonepistemic terms t.

Weighted Defaults

Weighted defaults have been integrated into theFLEX system to support the mod-
eling of rules which allow for exceptions. Syntactically, defaults are similar to
strict rules, i.e. they relate two concepts, one being the premise, the other the con-
clusion:

c1 => c2.
c1 �n�> c3.

Whereas the strict rule stipulates that any object being a c1 is also a c2, the default
only stipulates that usually an object which is a c1 is also a c3. The weight of the
default expresses its strength in cases where conflicts with other defaults arise—
the higher the weight the stronger the default.

In Section C we specify a preferential modeltheoretic semantics for weighted
defaults. It should be noted that weighted defaults allow to express orderings

2.2. CHARACTERISTICS OF FLEX 13

between multisets of defaults, i.e. weak defaults can accumulate their weights
and override a stronger default. This is a rather useful property in many appli-
cations [Quantz, Schmitz 94, Schmitz, Quantz 95]. In contrast, most prioritized
Nonmonotonic Logics only support orderings between individual defaults, such
that a stronger default overrides any number of weaker defaults.

Flexible Inference Strategies

FLEX offers a number of ways to control its inference behavior, which is based
on sequent-style inference rules [Royer, Quantz 92, Royer, Quantz 94]. The basic
idea is a declarative representation of these inference rules, which allows for most
rules to chose between

� an application during normalization;

� an application during subsumption checking;

� no application at all.

Furthermore, the inference behavior can be controlled by switching off propaga-
tion rules for roles via the filter construct, and by settingFLEX states.

The possibility to tailor the inference capabilities ofFLEX proved rather use-
full in our VERBMOBIL application, but it is not yet customized towards the end
user. Consequently we will not explain in detail how to control the inference be-
havior in this report, but we will say somethin about the underlying ideas in Chap-
ter 4.

Chapter 3

Tutorial

In this chapter we give a brief introduction into the use of theFLEX system. Our
main purpose is to introduce the functionality provided by the system and to il-
lustrate it with small examples. Note that we assume no prior knowledge ofDL in
our presentation. We strongly encourage the reader, however, to use an installa-
tion of theFLEX system to actually test out the examples presented in the follow-
ing. Installation of theFLEX system is described in detail in Section A. Here we
assume that the system already has been installed. All following examples can be
found in the DOCU directory in the file ‘examples’.1

As explained in detail in Section 2.1, inDL systems one distinguishes between
concepts, roles, andobjects. These entities can be used in four different types of
formulae:

term introductions t :< tn.
t := tn.

(situated) object descriptions o :: c (in s).
rules c1 => c2.

weighted defaults c1 �n�> c2.

In the next Section we introduce the basic term language ofFLEX, i.e. the op-
erators provided for the modeling of concepts and roles. In doing so, we also il-
lustrate the impact of these operators by considering object descriptions and rules.
Section 3.2 then describes more advanced interactions, such as reading and dump-
ing large models from/on files, controling the system behavior through setting of
states, and usage of the programming interface. Finally, Section 3.3 explains the
use of weighted defaults.

1The file ‘examples.model’ can be read in as will be explained in Section 3.2.

14

3.1. THE BASICS 15

3.1 The Basics

In DL one usually distinguishes between aTBoxand anABox. The TBox con-
tains the definition of the terminology, whereas the ABox contains information
about individual objects. Though this distinction is useful for several purposes,
we prefer an integrated presentation in the following, i.e. we will freely mix term
definitions and object descriptions since this allows a better illustration of the re-
spective impact of the various term-forming operators.

Defining Concepts

Like in all Description Logics, a distinction is made between concepts (unary
predicates) and roles (binary predicates). Since roles can be used in the definition
of concepts, and vice versa, we do not attempt a strictly separated introduction,
however. Before presenting the various concept-forming operators supported by
FLEX let us briefly reconsider the general purpose of concept definitions. Basi-
cally, concepts are used to describe objects, i.e. conceptsstructurea domain of
individuals. There are several respects in which structuring a domain is desirable.
The most basic one concerns storing and retrieval of objects—if you define a con-
cept ‘book’ you can use this concept to

1. inform the system that a particular object is an instance of the concept
‘book’;

2. let the system retrieve all known instances of the concept ‘book’.

Obviously, storing and later retrieving instances of a concept in this simple man-
ner is not very interesting. Things become more interesting, however, if concepts
are not only used as atomic labels, but rather aresemanticallyrelated to other
concepts. The most basic way of relating concepts in aDL system is by building a
conceptual hierarchy. The easiest way of building such a hierarchy is to “define”
a concept by specifying its super concepts, as illustrated in the following example:

flexinit.
publication :< ctop.

article :< publication.
conferencearticle :< article.

journal article :< article.

The initial commandFLEXINIT is used to inform the system that this is the begin-
ning of a model (its effects will be explained in detail on page 31.) The subse-
quent tells are calledprimitive concept introductions.

Please note two rather important restrictions wrt such term introductions:

16 CHAPTER 3. TUTORIAL

1. There can beonly one definitionfor each term name. It is thus not possible
to incrementally define concepts or to redefine them. Given the above tells,
the additional tell

conferencearticle :< publication.% this tell fails

therefore produces an error message indicating that the concept ‘confer-
encearticle’ has already been defined.

2. Terms used in a term introduction must have been introduced before. Thus
it is not possible to type in

biography :< book.% this tell fails

if book has not been introduced before.2

Conceptual hierarchies form the basis ofinheritance, the most fundamental in-
ference capability ofDL systems. We can thus ask the system whether a concept
is subsumedby some other concept, i.e. whether it is more specific. Given the
introductions above, the subsumption queries

journal article ?< article.
journal article ?< publication.

will succed, whereas the query

publication ?< article.% this query fails

will fail.

Describing Objects

In many applications subsumption queries will not be used explictly. It should
be noted, however, that subsumption relations provide the basis for object-level
reasoning. If the system is told that a particular object is an instance of ‘article’,
it immediately infers that it is also an instance of ‘publication’:

chineseroom :: article.
chineseroom ?: publication.

Whereas each term is only introduced once, an object can be described incremen-
tally, i.e. there may be several descriptions of the same object. We can thus add
the more specific description

2In Section 3.2 we explain how the behavior of FLEX can be modified by settingsystem
states/flags. When the state ‘introduction’ is set to ‘forward’, FLEX automatically introduces all
undefined terms used in a definition as primitive terms.

3.1. THE BASICS 17

chineseroom :: journalarticle.

Whereas no variables are allowed in subsumption queries, instantiation queries
can be used to backtrack all instances of a concept, by using a variable instead of
an object name:

X ?: article.% binds X to chinese room

Disjointness

An important characteristics ofDL systems is that they apply anopen-world se-
manticsinstead of the closed-world semantics underlying PROLOG and standard
databases.3 As a consequence, it must be explicitly modeled whether concepts
are to be treated as being disjoint or not. In the above example, ‘journalarticle’
and ‘conferencearticle’ are not modeled as disjoint concepts and hence the sys-
tem will not reject a description in which a publication is both a journal article
and a conference article.

multi pub :: journalarticle.
multi pub :: conferencearticle.

The easiest way to represent disjointness between concepts is to use the<> op-
erator:

scientificpublication <> fiction.
scientificpublication :< publication.

fiction :< publication.

The<> operator marks ‘scientificpublication’ and ‘fiction’ as disjoint concepts.
Note that this disjointness declaration has toprecedethe definition of the concepts
and that only primitive concepts can be marked as being disjoint.

Given this model, the system will reject a description in which a publication
is both a scientific publication and fiction:

non ex pub :: scientificpublication and fiction.% this tell fails

Note that disjointness of concepts can be checked on the terminological level by
checking whether their conjunction is subsumed byCBOT:

scientificpublication and fiction ?< cbot.

Note further that the FLEX system rejects incoherent object descriptions but ac-
cepts definitions which yield incoherent concepts:

3This difference has consequences wrt negation and monotonicity and has been explicitely ad-
dressed in the context of epistemic operators [Donini et al. 92].

18 CHAPTER 3. TUTORIAL

incoherentpublication :< scientificpublication and fiction.

The system produces a warning, whenever an incoherent concept is introduced,
however.

FLEX also offers theNOT operator for concept negation. The main difference
betweenNOT and<> is that the former negates the whole term whereas the latter
only negates the primitive component of a term. We will illustrate this distinction
in detail below, when discussing disjunction. For the time being it is sufficient to
know that

1. <> does not introduce the complexity thatNOT does;

2. <> is appropriate for expressing disjointness between terms.

The operator<> can also be used as a prefix operator taking a list of concepts as
arguments. All concepts specified in the list are then marked as being mutually
disjoint.

Defined and Primitive Concepts

We will now illustrate the rather important distinction between primitive terms
and defined terms. Consider the following definitions:

book :< publication.
novel :< book and fiction.

scientificbook := book and scientificpublication.

Note that ‘novel’ is introduced as aprimitive concept, whereas ‘scientificbook’
is adefinedconcept. The standard explanation of this distinction is that for primi-
tive terms only necessary conditions are specified, whereas for defined terms nec-
essary and sufficient conditions are specified. Thus we know that any ‘novel’ is a
‘book’ and ‘fiction’, i.e. we know necessary conditions about ‘novel’.

alice :: novel.
alice ?: book.
alice ?: fiction.

For ‘scientificbook’ we also know sufficient conditions, i.e. any object which is
an instance of both ‘book’ and ‘scientificpublication’ will be inferred to be an
instance of ‘scientificbook’.

origin :: book and scientificpublication.
origin ?: scientificbook.

Objects which are instances of both ‘book’ and ‘fiction’, on the other hand, are
not inferred to be instances of ‘novel’:

3.1. THE BASICS 19

shortstories :: book and fiction.
shortstories ?: novel.% this query fails

The following subsumption queries illustrate this distinction on the terminologi-
cal level:

novel ?< book and fiction.
book and fiction ?< novel.% this query fails
scientificbook ?< book and scientificpublication.

book and scientificpublication ?< scientificbook.

Thus the decision wether to model a term as a primitive or as a defined term
should be ultimately based on the required inferences. It should be noted that a
careful analysis of the required inference is in general the most appropriate basis
to choose between modeling alternatives.

Disjunction

In addition to concept conjunction theFLEX system also supports conceptdis-
junctionandnegation. The user should be warned, however, that the use of these
operators is a notorious source of complexity and can thus have considerable im-
pact on the performance of the system. In many cases, a model containing nega-
tion and disjunction can be transformed into a simpler model which yields similar
results but does not introduce the complexity caused by disjunction or negation.
We have already pointed out that the<> operator is appropriate in this sense for
modeling disjointness.

To illustrate the specific contribution of disjunctions in definitions consider
the following alternative definitions:

scientificpublication1 <> fiction1.
scientificpublication1 :< ctop.

fiction1 :< ctop.
publication1 := scientificpublication1 or fiction1.

Note that the subsumption relations are identical for both alternatives:

scientificpublication ?< publication.
fiction ?< publication.

scientificpublication1 ?< publication1.
fiction1 ?< publication1.

The difference concernsreasoningby cases, i.e. if a concept is defined as a dis-
junction and an object is known to be an instance of this concept and to benotan
instance of all the disjuncts but one, then it must be an instance of this disjunct:

20 CHAPTER 3. TUTORIAL

ulysses :: publication1 and not(scientificpublication1).
ulysses ?: fiction1.

Note that such an inference is not possible in our original model since it is
nowhere specified that a ‘publication’ is either a ‘scientificpublication’ or ‘fic-
tion’. Given the open-world semantics, there could be, for example another sub-
concept of ‘publication’:

ulysses :: publication and not(scientificpublication).
ulysses ?: fiction. % this query fails

Not that reasoning by cases is usually triggered by telling “negative facts”. If this
does not occur in your application, i.e. if reasoning by cases is not required in
your application, you should definitely avoid the use of negation and disjunction
in your definitions.

Defining Roles (Domain and Range)

We will now turn our attention towards the definition of roles and the use of roles
in concept definitions. Whereas concepts correspond to unary predicates, roles
correspond to binary predicates/relations. Consequently, roles can be described
by specifying the type of their first argument (DOMAIN) or their second argument
(RANGE).

Note that roles are often considered to be secondary compared to concepts, i.e.
roles are often seen as properties of concepts or objects and not as independently
existing entities. Consider the concept ‘publication’. Meaningful properties of
publications are ‘author’, ‘title’, ‘publicationyear’, etc. We can thus introduce a
role

hasauthor :< domain(publication).

This definition only constrains the domain of ‘hasauthor’ but does not contain
any restriction wrt its range, i.e. the objects which are allowed as fillers for the
role ‘hasauthor’. Moreover, it is possible that a publication has more than one
author:

chineseroom :: hasauthor:searle.
principia :: hasauthor:[russell,whitehead].

Note that the operator ‘:’ can thus take both an object and a list of objects as
second argument.

Note that the domain information specified for the role ‘hasauthor’ is suffi-
cient for the system to infer that ‘principia’ is a publicaiton:

principia ?: publication.

3.1. THE BASICS 21

Features

Since many roles are functional, i.e. can have at most one filler per object,FLEX

supports the definition offeatures, as exemplified by

publicationyear :< domain(publication) and range(number) and feature.

Thus it is not possible to specify two different publication years for a publication:

non ex pub :: publicationyear:1985 and
publicationyear:1987.% this tell fails

Another important aspect illustrated by this example is the use of the built-in con-
ceptNUMBER. FLEX offers special operators likeGT or LE to support the defini-
tion of number ranges. The following example illustrates such a definition of a
number range and the corresponding consistency check performed on the object
level:

sixtiespublication := publication and the(publicationyear,1960..1969).
do it :: publicationyear:1969.
do it ?: sixtiespublication.

non ex pub :: sixtiespublication and
publicationyear:1985.% this tell fails

Note that this example uses the role-restriction operatorTHE which will be dis-
cussed in more detail now.

Role Restrictions

The operatorTHE used in the above example takes as first argument a role and as
second argument a concept, as do the operatorsSOME andALL . The respective
meaning of these operators can be informally described as follows:

some(r,c): describes those objects which have a filler for role r which is an in-
stance of c.

all(r,c): describes those objects whose fillers for role r are all instances of c.

the(r,c): describes those objects which have exactly one filler for role r which
has to be an instance of c.

The following example illustrates theSOME operator:

famous :< ctop.
russell :: famous.

principia ?: some(hasauthor,famous).

22 CHAPTER 3. TUTORIAL

Furthermore, if we tell the system that all the authors of the Principia are famous,
Whitehead immediately becomes famous too:

principia :: all(hasauthor,famous).
whitehead ?: famous.

We will illustrate the reverse inference, namely that a book has the property that
all its authors are famous, below in the context of number restrictions.

Number Restrictions

Another type of role restrictions supported byDL systems arenumber restrictions.
The following example contains two definitions which use a minimum and a max-
imum restriction, respectively:

individual publication := atmost(1,hasauthor).
grouppublication := atleast(3,hasauthor).

Due to the open world semantics employed inDL systems,FLEX can only infer
minimum restrictions but no maximum restrictions from a specification of fillers:

epr :: hasauthor:einstein and hasauthor:podolsky and hasauthor:rosen.
epr ?: grouppublication.
epr ?: atmost(3,hasauthor). % this query fails

Thus if inferences involving maximum restrictions are required, the system has
to be informed that all role fillers have been specified by explicitly telling a maxi-
mum restriction. Note that this also applies to the abstraction of value restrictions:

arithmetik :: hasauthor:frege.
frege :: famous.

arithmetik ?: individualpublication. % this query fails
arithmetik ?: all(hasauthor,famous).% this query fails
arithmetik :: exactly(1,hasauthor).
arithmetik ?: individualpublication and all(hasauthor,famous).

Even though the system does not infer maximum restrictions it checks whether a
known maximum restriction is violated. Thus it is not possible to enter an ‘indi-
vidual publication’ having two authors:

non ex pub :: individualpublication and hasauthor:quine and
hasauthor:derrida. % this tell fails

FLEX also supportsqualifying number restrictions, i.e. number restrictions taking
as an additional argument a concept type. Whereas “plain” number restrictions
check how many fillers an object has for a certain role, qualifying number restric-
tions check the number of fillers of a certain type:

3.1. THE BASICS 23

X ?: atleast(2,hasauthor,famous).% binds X to principia

In general, qualifying number restrictions are equivalent to “plain” number re-
strictions for a range-restricted role:

atleast(2,hasauthor,famous) ?< atleast(2,
hasauthor and range(famous)).

atleast(2,hasauthor and range(famous)) ?< atleast(2,hasauthor,famous).

Before presenting additional operators for role definitions, we will briefly sketch
the use of theONEOFoperator.

Extensional Concepts

The concept-building operators introduced so far can be used tointensionallyde-
scribe concepts, i.e. to describe properties shared by their instances. In some
cases, however, it is useful to extensionally define concepts, i.e. to explicitly list
their instances. This is achieved by using the operatorONEOF, as illustrated by
the euro-centric example below:

country := oneof([france,germany, italy,japan,russia,uk,usa]).
europeancountry := oneof([france,germany,italy,uk]).
europeancountry ?< country.

It should be noted that the objects listed in these concept definitions “inherit” the
appropriate conceptual information:

france ?: europeancountry.
japan ?: europeancountry.% this query fails

Inverse Roles and Role Composition

After the excursion into geopolitics we now return to the presentation of role-
forming operators. We have already introducedDOMAIN andRANGE above and
will now introduce role inversion and composition.

The operatorINV is used to define inverse roles. Whereas the role ‘hasauthor’
relates publications and authors from the perspective of publications, its inverse
‘has written’ relates them from the perspective of authors:

haswritten := inv(hasauthor).
X ?: haswritten:principia.

% binds X to russell;whitehead
principia :: book.

book author := some(haswritten,book).
russel ?: bookauthor.

24 CHAPTER 3. TUTORIAL

Role composition is useful to modelrole chains. So far we have treated the ob-
jects related to publications as atomic. In general, however, most objects are
structured, and role chains can be used to exploit this structure. To illustrate this
we introduce the following roles:

institution :< ctop.
at institution :< range(institution) and feature.

in country :< domain(institution) and range(country) and feature.

Given a publication we might then be interested in the the country in which the
institution is located at which the authors work:

from institution := hasauthor comp atinstitution.
from country := frominstitution comp incountry.

Note that the system can already infer from this definition the domain and the
range of the newly defined role:

from country ?< domain(publication).
from country ?< range(country).

The following example illustrates the most important inference wrt role composi-
tion, namely the derivation of role fillers for role chains:

flex :: hasauthor:quantz.
quantz :: atinstitution:tub.

tub :: in country:germany.
flex ?: fromcountry:germany.

Term-Valued Features

The roles we have modeled so far were all used to relate individual objects. Some
features, however, seem to be more adequately modeled as relating individual ob-
jects with concepts. Consider as an example the topic of a publication, e.g. ‘de-
scription logics’, ‘knowledge representation’, or ‘artificial intelligence’. Instead
of treating these topics as object, it might be more appropriate to treat them as
concepts which makes it possible to order them in a conceptual hierarchy:

topic :< ctop.
artificial intelligence :< topic.

knowledgerepresentation :< artificial intelligence.
descriptionlogics :< knowledgerepresentation.

hastopic :< domain(scientificpublication) and termvalued.

Given this hierarchical model we obtain the obvious inferences (both for objects
and on the terminological level):

3.1. THE BASICS 25

flex :: hastopic:descriptionlogics.
X ?: hastopic:knowledgerepresentation.

% binds X to flex
hastopic:descriptionlogics ?< hastopic:artificial intelligence.

Note that in principle arbitrary concept or role terms, and not just names, can be
specified as fillers for term-valued features.

Situated Descriptions

We will now briefly illustratesituated descriptions, i.e. the use of situations in
object descriptions. The basic idea is to partition the ABox into different situa-
tions, such that an object description may hold in one situation but not in another.
Moreover, situations can extend each other, which roughly means that all object
descriptions holding in a situation also hold in all situations extending it.

For illustration consider the following example:

language :< ctop.
unknownlanguage :< language.

russian :: unknownlanguage in s1.
s1 <<= s2.

english :: unknownlanguage in s2.
russian ?: unknownlanguage.

% this query fails
russian ?: unknownlanguage in s1.
russian ?: unknownlanguage in s2.
english ?: unknownlanguage.

% this query fails
english ?: unknownlanguage in s1.

% this query fails
english ?: unknownlanguage in s2.

Note that object descriptions not containing a situation are taken to be descrip-
tions of the built-in situationINITIAL which all other situations extend. Note fur-
ther that you can use a variable as situation in situated descriptions and on the
right-hand side of an extension statement. In this caseFLEX generates a situation
name ‘extsitN’.

Rules

We end this section by briefly introducing the usage ofrules:4

4For the concept ‘aiconference’ we define a filter which we will need below. We will explain
the use of filters in detail in Section 3.2.

26 CHAPTER 3. TUTORIAL

conference :< ctop.
ai conference :< conference with filter=topicconf type.
at conference :< domain(conferencearticle) and

range(conference) and feature.
the(atconference,aiconference) => hastopic:artificial intelligence.

Whenever an object is subsumed by the left-hand side of a rule, its right-hand side
is added to its description:

ijcai91 :: ai conference.
tractabledl :: at conference:ijcai91.
tractabledl ?: hastopic:artificial intelligence.

3.2 Advanced Interactions

In this section we describe more advanced interactions withFLEX, such as the
programming interface, the use of filter, the setting ofFLEX states and the reading
and dumping of knowledge bases.

The Programming Interface

So far we have used only two types of queries to retrieve information from the
knowledge base, namely:

term 1 ?< term 2.
object ?: concept.

Theprogramming interfaceprovides a list of more complex queries which can be
used to retrieve specific information about terms and objects (see Figure 3.1).5

The basic syntax of the programming interface is as follows:

1. flexget(Entity,Method,Result)

2. flexget(Entity,Method,Options,Result)

where ‘Entity’ is a concept, a role or an object. Depending on the type of the
entity different methods can be used to retrieve information. Figure 3.1 lists these
methods as well as their respective options and result.Note that some methods
require mandatory arguments.

We can roughly distinguish between predicates providingstructuralandhier-
archical information. To obtain hierarchical information about concepts or roles,
four predicates are available:

5It should be noted that from a theoretical point of view, these queries can all be reduced to the
simple queries about subsumption and instanceship.

3.2. ADVANCED INTERACTIONS 27

Method at Entity Options Result
all(Role) conc box Conc

all(Role,Sit) obj box Conc
atleast(Role) conc box Integer

atleast(Role,Sit) obj box Integer
atleast(Role,Conc) conc box Integer

atleast(Role,Conc,Sit) obj box Integer
atmost(Role) conc box Integer;in

atmost(Role,Sit) obj box Integer;in
atmost(Role,Conc) conc box Integer;in

atmost(Role,Conc,Sit) obj box Integer;in
concepts(Sit) obj box ListOfConc

dir subs conc,role box,filter ListOfConc/Role
dir supers conc,role box,filter ListOfConc/Role
domain role — Conc

equivalents conc,role box,filter ListOfConc/Role
fillers(Role) conc box ListOfObj

fillers(Role,Sit) obj box ListOfObj
help conc,obj,role — ListOfMethods

instances(Sit) conc box ListOfObj
msc(Sit) obj filter,box ListOfConc

range role — Conc
subs conc,role box,filter ListOfConc/Role

supers conc,role box,filter ListOfConc/Role
tvf filler(Role) conc box,filter Conc/Role

tvf filler(Role,Sit) obj box,filter Conc/Role

Figure 3.1: The programming interface.

dir subs retrieves the direct subsumees of a concept or a role;
flexget(book,dirsubs,Result).
% binds Result to [novel,scientific book]

dir supers retrieves the direct subsumers of a concept or a role;
flexget(scientificbook,dir supers,Result).
% binds Result to [scientific publication,book]

subs retrieves all subsumees of a concept or a role;
flexget(article,subs,Result).
% binds Result to
[cbot,conference article,journal article]

28 CHAPTER 3. TUTORIAL

supers retrieves all subsumers of a concept or a role.
flexget(novel,supers,Result).
% binds Result to [ctop,publication,fiction,book]

These predicates can be parameterized by two options:

box can be used to take into account the rules modeled in the IBox or the defaults
modeled in the DBox (see Section refsec:dbox;

filter can be used to restrict the result to concepts or roles satisfying the respec-
tive filter (see next subsection).

The methods provided for retrieving structural information about entities are dif-
ferent for roles on the one hand and concepts and objects on the other hand. For
roles two methods are available:

domain retrieves the domain of a role;
flexget(hasauthor,domain,Result).
% binds Result to publication

range retrieves the range of a role.
flexget(publicationyear,range,Result).
% binds Result to number

For concepts and objects the following methods are available. It should be noted
that these methods require an argument specifying the situation when used for
objects:

fillers retrieves the role fillers at a role;
flexget(principia,fillers(hasauthor,initial),Result).
% binds Result to [russell,whitehead]

atleast retrieves the (qualifying) minimum restriction at a role;
flexget(grouppublication,atleast(hasauthor),Result).
% binds Result to 3

atmost retrieves the (qualifying) maximum restriction at a role;
flexget(individualpublication,atmost(hasauthor),Result).
% binds Result to 1

tvf filler retrieves the filler of a term-valued feature;
flexget(flex,tvffiller(hastopic,initial),Result).
% binds Result to description logics

all retrieves the value restriction at a role.
flexget(principia,all(hasauthor),Result).
% binds Result to famous

3.2. ADVANCED INTERACTIONS 29

Finally we can retrieve the (most specific) concepts of which an object is an in-
stance by using the methodsCONCEPTSand MSC, as well as the objects which
are instances of a concept by usingINSTANCES:

concepts retrieves all concepts of which an object is an instance.
flexget(principia,concepts(initial),Result).
% binds Result to [ctop,publication,book]

msc retrieves the most specific concepts of which an object is an instance.
flexget(principia,msc(initial),Result).
% binds Result to [book]

instances retrieves all objects which are instances of a concept.
flexget(article,instances(initial),Result).
% binds Result to
[chinese room,multi pub,tractable dl,obj 2]

Filter

The filter construct supports a limited form of representing second-order informa-
tion by specifying properties of concepts and roles. Note that these properties are
properties of concepts or roles andnot of their instances, i.e. they are not inher-
ited.

Filters are useful for several reasons: for one thing, they can be used to par-
tition the conceptual hierarchy, e.g. by distinguishing different layers in the hier-
archy, or by annotating which developer introduced which concepts, or by anno-
tating which user will work with which concepts. The second major use of filters
concerns the control of theFLEX inference behavior and will be explained in more
detail below.

Filters have to be specified when terms are defined, as illustrated in the fol-
lowing example, in which we distinguish different between “geographical” sub-
concepts of conferences (european conferences vs international conferences) and
topical subconcepts of conferences (AI conferences vs linguistic conferences):

linguistic conference :< conference with filter=topicconf type.
internationalconference :< conference with filter=geoconf type.

europeanconference :< conference with filter=geoconf type.
ecai :< ai conference and europeanconference.
ijcai :< ai conference and internationalconference.

ecai96 :: ecai.
ijcai95 :: ijcai.

The effect of these filters is illustrated below:

30 CHAPTER 3. TUTORIAL

% binds Result to [ai conference,linguistic conference,international co

% binds Result to [

Reading and Dumping

So far we have typed in definitions, rules, and object descriptions interactively.
When building a realistic model, however, the respective tells should rather be
read from a file. If theFLEX system has been installed as described in Section A
and started in the directory ‘flex’ you can read in an example file as follows:6

flexread(’DOCU/examples.model’).

Note that the file ‘examples.model’ starts with the commandFLEXINIT, which
initializes the knowledge base (i.e. all tells typed in previously are retracted) and
sets the verbosity toINFO (see below). The system therefore outputs information
about each tell it has read in.

Note further thatFLEX performs a syntax check before processing the indi-
vidual tells. IfFLEX detects syntactic errors it produces a listing and asks the user
whether she wants to read in the model anyway.

Though each individual tell is processed quickly by the system, reading in
large models is usually rather time consuming. To avoid reading in a model each
time you want to work with it,FLEX allows the dumping and loading of knowl-
edge bases:

flexdump(’DOCU/examples.dump’).
flexload(’DOCU/examples.dump’).

It should be noted thatFLEXDUMP will overwrite any existing file with the speci-
fied name.

When developing a large model it is in general useful to dump the stable part
of the model and to use a combination ofFLEXLOAD andFLEXREAD to test out
the new/modified parts. Needless to say that in this case, the files to be read after
loading the stable part should not contain theFLEXINIT command.

6The example file contains all the tells used in this manual up to this point, i.e. executing the
commands in this subsection will give you the same knowledge base as if you had typed in all the
tells individually.

3.2. ADVANCED INTERACTIONS 31

State Settings Setting afterFLEXINIT
classobjects on, off on

defspacedbox best,all best
eval dbox local,global local

introduction forward,noforward noforward
syntaxcheck on,off on

verbosity silent,error,warning,info,trace info

Figure 3.2: States, possible settings, and settign afterFLEXINIT .

States

The behavior of theFLEX system can be controlled by setting various flags or
states as summarized in the table in Figure 3.2. The stateVERBOSITY, for ex-
ample, controls the amount of information output by the system. The respective
settings are obtained by typing the following commands:

flexstate(verbosity=silent).
flexstate(verbosity=error).

flexstate(verbosity=warning).
flexstate(verbosity=info).

flexstate(verbosity=trace).

FLEX performs auto-completion on states and settings, i.e. you can also type
‘flexstate(v=i).’ to set the verbosity onINFO.

To see the effect of the respective settings, just try the following object tells
with different settings:

X :: scientific publication and fiction.% this query fails
X :: at conference:ijcai.

Note that the commandFLEXINIT assigns each flag its default value, e.g. it sets
the verbosity onINFO. If you prefer other settings, you thus have to specify these
settings after theFLEXINIT if you read in the model from a file, or you can define
your own init as a Prolog predicate, e.g.:

my init :–
flexinit,
flexstate(v=s).

The stateINTRODUCTION can be used to turn on/off the automatic introduc-
tion of undefined terms:

32 CHAPTER 3. TUTORIAL

flexstate(introduction=forward).
flexstate(introduction=noforward).

Note that the forward introduction introduces undefined terms as primitive terms
and that it isnot possible to redefine these terms. Forward introduction is thus
useful to quickly test the system behavior for small examples. For real models we
strongly recommend to turn off the automatic introduction since otherwise typos
are not detected. Therefore, automatic introduction is turned off byFLEXINIT.

The statesCLASS OBJECTS, DEFSPACE DBOX and EVAL DBOX are used to
control the inference behavior ofFLEX. The latter two concern weighted defaults
and will be explained in Section 3.3. IfCLASS OBJECTSis set to stateON, objects
will be classified wrt the conceptual hierarchy, i.e. their most specific subsuming
concepts are computed. This is reasonable in information-system applications,
in which retrieving instances is a frequent operation. IfCLASS OBJECTSis set to
stateOFFobjects are not classified wrt the conceptual hierarchy which reduces the
time needed for processing object tells. Note that neither the methodINSTANCES

nor a variable on the left-hand side of ?:/2 can be used ifCLASS OBJECTSis set to
OFF.

Controling Inferences

We end this section by briefly sketching how the inference behavior ofFLEX can
be controlled.7 There are basically two ways of influencing the inference behav-
ior:

1. It is possible to switch off inference rules completely, or to select between
an application during normalization (forward reasoning) and during sub-
sumption checking (backward reasoning).

2. When defining a role, the propagation behavior of the role can be specified
by using the filter construct.

Note that both ways of controling the inference behavior presuppose a basic fa-
miliarity with the inference mechanisms underlyingDL systems and are not yet
customized towards end users (i.e. if you are a novice toDL you may safely skip
this subsection).

You can change the application mode of an inference rule when using the
graphical user interface (see Chapter 5. Click on the ‘configuration’ menu, then
chooseCHANGE RULES IN CLASS, then select a class (e.g. Objall) and modify
the rule application.

In order to specify the propagation behavior of roles you have to use the built-
in filter ‘no prop’ as illustrated by the following examples:

7For the proof-theoretical foundation see Section C.3.

3.3. WEIGHTED DEFAULTS 33

r1 :< rtop with filter=[no prop([1])].
c1 :< ctop.
o1 :: r1:o2 and all(r1,c1).
o2 ?: c1. % this query fails
r2 :< rtop with filter=[no prop([2])].
o1 :: r2:o2.
o2 ?: inv(r2):o1.% this query fails

The main idea of the ‘noprop’ filter is to allow the user to switch of inferences
whose results she knows she will never use. To switch of all propagations for a
role, simply use the filter ‘noprop’ with no argument, to switch of several propa-
gations rules, put all of them in the list-argument of ‘noprop’.

3.3 Weighted Defaults

In this section we will briefly sketch the use of weighted defaults in a DL-model.
It should be noted, however, that our experiences with weighted defaults in appli-
cations are still rather limited and that we are still investigating how to facilitate
their use.

The basic idea of defaults is to represent rules which allow for exceptions.
Their syntactic format is thus similar to strict rules, but whereas

c1 => c2

means thateveryobject which is a ‘c1’ also is a ‘c2’, the corresponding default

c1 �N�> c2

allows for exceptions. This is usually paraphrased as: an object which is an in-
stance of ‘c1’ is also an instance of ‘c2’ unless this is inconsistent with other in-
formation. Most of the research in Nonmonotonic Reasoning has focused on the
question how this intuitive characterization can be turned into a formal seman-
tics. The implementation of weighted defaults in FLEX is based on a preferential
modeltheoretic semantics developed in [Quantz, Suska 94, Quantz 95] (see Ap-
pendix C.2).

In the following we will use defaults to model criteria for deciding whether to
buy a book or not. We model the result of this decision with the feature

boolean := oneof([yes,no]).
buy it :< domain(book) and range(boolean) and feature.

We can then specify defaults whose conclusions say wether to buy a book or not
and whose premises are the criteria relevant for the decision.

One important criterion might be the price of a book, which can be modeled
by

34 CHAPTER 3. TUTORIAL

hasprice :< domain(book) and range(number) and
feature.

book and the(hasprice,lt(10)) �20�> buy it:yes.

The effect of this default can be illustrated by considering the following object
tell:

book 1 :: hasprice:9.

Thus ‘book1’ is an instance of the left-hand side of the above default. To trigger
the application of the default we have to specify the defaults-option in the flexget-
query:

flexget(book1,fillers(buyit,initial),box=defaults,Result).
% binds Result to [yes]

Note that the default can be straightforwardly overridden, e.g. adding

book 1 :: buy it:no.

yields

flexget(book1,fillers(buyit,initial),box=defaults,Result).
% binds Result to [no]

Besides this explicit overriding in descriptions, defaults can also be overridden by
strict rules:

written in :< domain(publication) and
range(language) and feature.

book and the(writtenin,unknownlanguage) => buy it:no.

Thus having

book 2 :: hasprice:9.

yields

flexget(book2,fillers(buyit,initial),box=defaults,Result).
% binds Result to [yes]

but adding

book 2 :: written in:russian.

yields

3.3. WEIGHTED DEFAULTS 35

flexget(book2,fillers(buyit,initial),box=defaults,Result).
% binds Result to [yes] flexget(book2,fillers(buyit,s1),box=defaults,Result).

% binds Result to [no]

since ‘russian’ is an unknown language in ‘s1’.

Finally, defaults cannot only be overridden by strict information but also by
other defaults. Thus given only the above default we would buy any book costing
less than 10$, regardless of author or topic. It seems more reasonable, however,
to buy a book only if there are important reasons to do so, i.e. to set ‘buyit’ to
‘no’ per default:

book �100�> buy it:no.
book 3 :: book and hasprice:9.

Note that two defaults are applicable at ‘book3’, one having weight 20, the other
weight 100. Roughly speaking, the semantics for weighted defaults says that in
case of conflicting defaults, default application has to be performed such that the
sum of the weights of the overridden defaults is minimized.

flexget(book3,fillers(buyit,initial),box=defaults,Result).
% binds Result to [no]

Given the above model, we thus have to weight the defaults modeling criteria for
buying a book such that their cumulative weight is greater than 100.

interestingtopic :< topic.
favorite topic :< topic.

naturallanguageprocessing :< interestingtopic.
philosophyof mind :< favorite topic.

book and hastopic:interestingtopic �75�> buy it:yes.
book and hastopic:favoritetopic �110�> buy it:yes.

book and the(hasprice,ge(50)) �20�> buy it:no.
book and some(hasauthor,famous) �20�> buy it:yes.

The effect of these defaults is summarized in Figure 3.3, some examples are given
below:

36 CHAPTER 3. TUTORIAL

Sum of Sum of
has topic hasprice hasauthor “yes”-weights “no”-weights buy it

— < 10 famous 40 100 no
— < 10 — 20 100 no
— � 10; < 50 famous 20 100 no
— � 10; < 50 — 0 100 no
— � 50 famous 20 120 no
— � 50 — 0 120 no

interestingtopic < 10 famous 115 100 yes
interestingtopic < 10 — 95 100 no
interestingtopic � 10; < 50 famous 95 100 no
interestingtopic � 10; < 50 — 75 100 no
interestingtopic � 50 famous 95 120 no
interestingtopic � 50 — 75 120 no

favorite topic < 10 famous 150 100 yes
favorite topic < 10 — 130 100 yes
favorite topic � 10; < 50 famous 130 100 yes
favorite topic � 10; < 50 — 110 100 yes
favorite topic � 50 famous 130 120 yes
favorite topic � 50 — 110 120 no

Figure 3.3: Effects of defaults.

winograd :: famous.
wittgenstein :: famous.

book 4 :: hastopic:naturallanguageprocessing and hasprice:9 and
hasauthor:winograd.

book 5 :: hastopic:naturallanguageprocessing and hasprice:20.
book 6 :: hastopic:naturallanguageprocessing and hasprice:20 and

hasauthor:winograd.
book 7 :: hastopic:philosophyof mind and hasprice:20.
book 8 :: hastopic:philosophyof mind and hasprice:50

and hasauthor:wittgenstein.
book 9 :: hastopic:philosophyof mind and hasprice:50.

These tells yield the following results:8

8We are still working on an adequate interface for default reasoning. The predicate
dbox print results(Object,Situation) outputs some information about applied and overridden
defaults.

3.3. WEIGHTED DEFAULTS 37

flexget(book4,fillers(buyit,initial),box=defaults,Result).
% binds Result to [yes]

dbox:dboxprint results(book4,initial).
flexget(book5,fillers(buyit,initial),box=defaults,Result).

% binds Result to [no]
dbox:dboxprint results(book5,initial).

flexget(book6,fillers(buyit,initial),box=defaults,Result).
% binds Result to [no]

dbox:dboxprint results(book6,initial).
flexget(book7,fillers(buyit,initial),box=defaults,Result).

% binds Result to [yes]
dbox:dboxprint results(book7,initial).

flexget(book8,fillers(buyit,initial),box=defaults,Result).
% binds Result to [yes]

dbox:dboxprint results(book8,initial).
flexget(book9,fillers(buyit,initial),box=defaults,Result).

% binds Result to [no] dbox:dboxprint results(book9,initial).

We are still working on an adequate interface for default application. The follow-
ing example

dbox:dboxprint results(book8,initial).

Finally, we will briefly describe two states which can be used to control the
inference behavior of the DBox. The stateDEFSPACE DBOX can be set toBEST

or ALL . If it is set toBEST only the best default space is computed, if it is set to
ALL all default spaces are computed. The latter is useful for debugging purposes.

The stateEVAL DBOX can be set toLOCAL or GLOBAL. If it is set toLOCAL

defaults will be optimized locally at each object only. Note that this is not correct
from a semantic point of view but is sufficient for most applications.

Chapter 4

Inference Algorithms

In this chapter we sketch the main inference algorithms implemented in FLEX.
We begin by describing the algorithms used for the strict part of FLEX, namely
normalization, subsumption checking, and object level reasoning. We then
present the main structure of the algorithm used for computing default spaces.

4.1 Computing Subsumption

Inferences in FLEX

The main inferential task of theFLEX system is to answer queries of the form

o ? : c in s
t1 ? < t2

wrt a modeling containing formulae of the form

tn := t
c1 => c2
s1 � s2
o :: c in s

Two things are important to note:

1. TheFLEX system already performs inferences when reading in a modeling.
There are two major inference components, namely theclassifierand the
recognizer. The classifier checks subsumption between the terms defined
in the terminology and thus computes thesubsumption hierarchy. The rec-
ognizer determines for each object which concepts it instantiates and thus
computes theinstantiation index.

38

4.1. COMPUTING SUBSUMPTION 39

2. For answering both kinds of queries, the same method can be used, namely
subsumption checking. Thus when answering a query o? : c ins, the system
checks whether the normal form derived for o in s is subsumed by c.

Though the recognizer thus uses the classifier to perform its task, there is an im-
portant difference between the two components. Whereas the classifier performs
only “local” operations, the recognizer has to perform “global” operations. This
distinction can be illustrated by briefly skeching the algorithmic structure of both
components.

Given a list of definitions, the classifier takes each definition and compares it
with all previously processed definitions, thereby constructing a directed acyclic
graph called the subsumption hierarchy. Thus the concept classifier is a function
‘Concept� DAG ! DAG’, where the initial DAG contains the nodesctop and
cbot. Locality here means that classifying a concept has no impact on previous
classification results, i.e. classifying concept c3 has no impact on the subsumption
relation between c1 and c2.

Recognition, on the other hand, has global effects. Basically, the recognizer
processes a list of descriptions and computes for each object which concepts it
instantiates, i.e. it is a function ‘Description� Index� DAG ! Index’. Nonlo-
cality here means that recognition triggered by a description ‘o1 :: c in s’ can lead
to changes in the instantiation index for some other object o2, as exemplified by

o1 :: r:o2 in s
o1 :: 8r:c in s

Here processing the second description includes the derivation of o2 :: c in s.
Note that another distinction between classification and recognition is thus

that there is exactly one definition for each term in the terminology, whereas ob-
jects can be described incrementally, i.e. we can have several descriptions for an
object in a situation.

In this report we will describe the algorithmic structure ofnormalization, sub-
sumption checking, and object-level propagation. Before doing so in the fol-
lowing sections, we will briefly present the proof-theoretical basis of these algo-
rithms.

Tableaux-Based Algorithms vs Normalize-Compare Algorithms

The first classifiers forDL were specified asstructural subsumptionalgorithms
[Schmolze, Israel 83]. The basic idea underlying structural subsumption is to
transform terms into canonical normal forms, which are then structurally com-
pared. Structural subsumption algorithms are therefore also referred to as
normalize-comparealgorithms. Note that there is a general tradeoff between nor-
malization and comparison: the more inferences are drawn in normalization, the
less inferences have to be drawn in comparison, and vice versa.

40 CHAPTER 4. INFERENCE ALGORITHMS

� j=DL iff � j=FOL

iff iff
� `DL iff � `SC

Figure 4.1: The commutative diagram underlying the sequent-style approach to
inference rule derivation.

There is one severe drawback of normalize-compare algorithms—though it
is in general straightforward to prove the correctness of such algorithms there is
no method for proving their completeness. In fact, most normalize-compare al-
gorithms are incomplete which is usually demonstrated by giving examples for
subsumption relations which are not detected by the algorithm [Nebel 90].

At the end of the 1980’stableaux methods, as known from FOL

(cf. [Sundholm 83, p. 180ff]), were applied toDL (e.g. [Donini et al. 91a,
Donini et al. 91b]). The resulting subsumption algorithms had the advantage of
providing an excellent basis for theoretical investigations. Not only was their cor-
rectness and completeness easy to prove, they also allowed a systematic study of
the decidability and the tractability of differentDL dialects.

The main disadvantage of tableaux-based subsumption algorithms is that they
are not constructive but rather employ refutation techniques. Thus in order to
prove the subsumption c2 v c1 it is proven that the term c1 u : c2 is inconsis-
tent, i.e. that o :: c1 u : c2 is not satisfiable. In most existing systems, on the
other hand, inference rules are more seen as production rules, which are used to
pre-compute part of the consequences of the initial information. This corresponds
more closely to Natural Deduction or Sequent Calculi, two deduction systems
also developed in the context ofFOL.

A third alternative, combining advantages of the normalize-compare approach
and tableaux-based methods has been proposed in [Royer, Quantz 92]. The basic
idea is to useSequent Calculiinstead of tableaux-based methods for the char-
acterization of the deduction rules. Like tableaux methods, sequent calculi pro-
vide a sound logical framework, but whereas tableaux-based methods are refuta-
tion based, i.e. suitable for theorem checking, sequent calculi are constructive, i.e.
suitable for theorem proving.

The methodology for constructing a sequent-style proof theory forDL is
straightforward and summarized by the commutative diagram shown in Fig-
ure 4.1. SinceDL are subsets of First-Order Logic (FOL), we can translate aDL

formula into anFOL formula (). That is we know, due to the completeness of
the Sequent Calculus (`SC) for FOL:

� j=DL iff � j=FOL

4.1. COMPUTING SUBSUMPTION 41

� j=FOL iff � `SC

If we now can show that

� `SC iff � `DL

we immediately get the desired completeness

� j=DL iff � `DL

Thus the main task is to prove that for everySC proof of anFOL translation of a
DL formula there is a correspondingDL proof of.

Applying this methodology one obtains inference rules like

> v c *) > v 8r:c

c2 u c1 v ? ; r1 v r2 * 8r2:c2 u �p r1:c1 v ?

Note that this format is sufficient for a theoretical characterization of a deduction
system, i.e. given a set of inference schemata� we can define a least fixed point
�! by taking the logical closure of a set of formulae� under�. We can then say
that� `� iff 2 �!(�).

Though we can study formal properties like soundness or completeness, i.e.
the relation between� `� and� j= , on the basis of this characterization,
we need an additional control strategy for turning the deduction system into an
algorithm. The main reason for this is that�!(�) is not finite. The sequent-style
approach thus falls into two separate phases:

1. Derivation of a complete axiomatization by systematically rewritingFOL

proofs.

2. Specification of a control strategy to turn the complete axiomatization into
an algorithm.

In the following we will concentrate on the second task, relying on the axioma-
tization derived in [Royer, Quantz 93]. Note that this axiomatization is not com-
plete for theDL underlyingFLEX. As shown in [Royer, Quantz 93], the complex-
ity of deriving a complete axiomatization differs considerably wrt the investigated
DL fragments:

1. A complete axiomatization of subsumption is specified for aDLcontaining
only concept-forming operators without equality and no role-forming oper-
ators.

2. A complete axiomatization is also given for role subsumption.

42 CHAPTER 4. INFERENCE ALGORITHMS

Concept Atom Abstract Syntax Role Atom Abstract Syntax
ctop > rtop >r

cbot ? rbot ?r

prim(C) cp prim(R) rp
atleast(N,R,C) �n r:c domain(C) cjr
atmost(N,R,C) �n r:c range(C) rjc

all(R,C) 8r:c comp([R1,R2]) r1.r2
rvm eq([R1,R2]) r1=r2 inv(R) r�

R:[O]) r:o
oneof([O1,...,On]) fo1; :::;ong_

Figure 4.2: Correspondence between atoms and abstract syntax.

3. The complexitiy of deriving complete axiomatizations is considerably
higher, however, for

(a) subsumption inDL containing role-forming operators and/or concept-
forming operators involving equality

(b) object-level reasoning

Though this is in fact a rather negative result, it does not make the sequent-style
approach useless. Based on the sequent-style rules,flexible inference systems
can be implemented, which allow to control the inference strategy by specifying
whether a rule should be applied during normalization, during comparison, or not
at all. The sequent-style rules are thus used to formally characterize incomplete
reasoning (see also [Royer, Quantz 94]).

Normalization

As should have become obvious from the general description above, normal
forms play a crucial role in the implementation ofDL inference algorithms. The
FLEX system computes for each concept name, role name, and object a normal
form, which is the basis for further processing. We will now briefly sketch

1. the format of normal forms;

2. the transformation ofDL terms into normal forms;

3. the structure of normalization rules.

Let us start with theformatof normal forms. The basic building blocks of normal
forms are so-calledatoms, which correspond to the term-building operators of the

4.1. COMPUTING SUBSUMPTION 43

a1 ^ a2 nf([a1; a2],[ctop])
a1 _ a2 nf([ctop],[nf([a1],[ctop]),nf([a2],[ctop])])

a1 ^ (a2 _ a3) nf([a1],[nf([a2],[ctop]),nf([a3],[ctop])])

Figure 4.3: Examples for the normal forms based on [Kasper 87].

Concept Atom Negation Role Atom Negation
ctop cbot rtop rbot

prim(C) negprim(C) prim(R) negprim(R)
atleast(N,R,C) atmost(N-1,R,C) domain(C) domain(NEG(C))

all(R,C) atleast(1,R,NEG(C)) range(C) range(NEG(C))
rvm eq([R1,R2]) neg rvm eq([R1,R2]) comp([R1,R2]) negcomp([R1,R2])

fillers(R,[O]) negfillers(R,[O]) inv(R) neg inv(R)
oneof([O1,...,On]) negoneof([O1,...,On])

Figure 4.4: Negation of atoms.

DL. Figure 4.2 shows the correspondence between atoms and the abstract syntax
used in Chapter C. Note that the R’s and C’s occurring in the atoms are theme-
selves normal forms of roles and concepts. One way of formally defining atoms
and normal forms is thus by means of a parallel inductive definition, as done in
[Royer, Quantz 92].

For languages not containing negation or disjunction, a normal form is sim-
ply a set of atoms. SinceFLEX contains both disjunction and negation, however,
we need a more complicated format, however. Kasper has proposed a format
of disjunctive normal forms, which allows fast detection of unification failures
[Kasper 87]. The basic idea is to separate between the non-disjunctive part of a
normal form and the disjunctive part. The non-disjunctive part of a normal form is
simply a list of atoms, the disjunctive part is a list of normal forms. Since ‘ctop’,
‘cbot’, ‘rtop’, and ‘rbot’ are considered full-fledged normal forms, this recursive
definition is well founded.

Note that each term can easily be transformed into a normal form by “elimi-
nating” conjunctions, disjunctions, and negations. The examples in Figure 4.3, in
whichai stand for arbitrary atoms, illustrate this transformation of terms into nor-
mal forms. Note further that negation can be completely eliminated since the set
of atoms is closed under negation. Figure 4.4 shows for each atom its negation.
Thus given a concept definition ‘cn:= c’ or an object description ‘o :: c in s’, the
system transforms the term ‘c’ into a normal form. This normal form is then fur-

44 CHAPTER 4. INFERENCE ALGORITHMS

ther processed by applying normalization rules. The basic idea of normalization
is to make information implicitly contained in a normal form explicit, i.e.

NORMALIZE: NF ! NF

In principle, we can distinguish 3 types of normalization rules as illustrated by the
following examples:

1. Some inference rules are already used in the transformation of external
terms into internal normalform format, e.g.

* :8r : c
:
= 9r : :c

2. Most inference rules yield a subsumption formula where the subsuming
term can be represented as an atom and the subsumed term as a list of
atoms, e.g.

c1 u c2 v c3;

r2 v r1; r2 v r3 * 9r1 : c1 u 8r2 : c2 v 9r3 : c3

3. Some inference rules yield a subsumption formula containing disjunctions
in the subsuming or subsumed term, e.g.

* 8r:r� : c v c t �0r : >

Thus the first type of normalization rules is “hard-wired” into the parser and can-
not be controlled from the outside. This is necessary to guarantee a format of
normalforms which makes further processing more efficient (cf. the restriction to
Negation Normal Forms in certain variants of the Sequent Calculus).

For the second type of normalization rules, a straightforward normalization
strategy is used. The conjunctive part of a normalform, i.e. a list of atoms, is pro-
cessed one by one, using the currently processed atom as trigger and then looking
for the other atoms needed in the triggering conditions. Formally, these normal-
ization rules have the general format

�1; : : : ; �n * �

i.e. if the atoms�1; : : : ; �n are contained in the conjunctive part of a normalform,
then� is added to this conjunctive part.

Roughly speaking, a predicate ‘norm(TriggerAtom,CNF,AddAtom)’ is used
to realize this type of normalization rules, i.e. we have predicates like

norm(some(R1,C1),Con,some(R1,C1 and C2)) :–
activenorm rule(23),
member(all(R2,C2),Con),
subsumes(R2,R1).

4.1. COMPUTING SUBSUMPTION 45

Note that the information whether this rule is applied in the normalization phase
is provided by ‘activenorm rule’. Thus a configuration specifying a particular
inference strategy for FLEX consists of a list of declarations for active normaliza-
tion or subsumption rules.

The third type of normalization rules is more difficult to realize, since it in-
volves either checking of disjunctions in the triggering conditions or adding of
complex information to a normalform.

Subsumption Checking

The task of subsumption checking is to decide whether a normal form subsumes
another normal form, i.e.

SUBSUMES: NF� NF! BOOL

As has been mentioned above, there is a general trade-off between normalization
and subsumption checking. The more inferences are performed during normal-
ization, the less inferences have to be drawn during subsumption checking. In
principle it is possible to produce normal forms which guarantee that subsumption
checking only has to test subsumption between individual atoms. Suchvivid nor-
mal forms have been presented for a simple fragment ofDL in [Royer, Quantz 92,
Sect. 5].

The disadvantage of such vivid normal forms is that they require the applica-
tion of many normalization rules, making information explicit which might never
be needed. Performing inferences during subsumption checking on the other hand
guarantees that inferences are only drawn when actually needed.1

Basically, subsumption checking between normal forms is ultimately reduced
to subsumption checks between atoms, but includes also special subsumption
rules for disjunctive parts, non-disjunctive parts, etc. Figure 4.5 shows the re-
duction of subsumption between normal forms to subsumption between parts of
normal forms and ultimately atoms.2

Object-Level Reasoning

As already indicated above, object-level reasoning is inherently non-local and it
is therefore useful to distinguish between a local phase and a non-local phase in
object-level reasoning.

1In general, a mixed strategy is needed, which ensures both efficient performance and detec-
tion of inconsistency already during normalization.

2To keep the presentation simple, subsumption rules are only given for concepts but not for
roles.

46 CHAPTER 4. INFERENCE ALGORITHMS

subsumesnf nf(ctop,).
subsumesnf nf(,cbot).
subsumesnf nf(nf(Con,Dis),NF) :–

subsumescon nf(Con,NF), subsumesdis nf(Dis,NF).

subsumescon nf([Atom],NF) :–
subsumesatomnf(Atom,NF).

subsumescon nf([AtomjAtoms],NF) :–
subsumesatomnf(Atom,NF), subsumescon nf(Atoms,NF).

subsumesatomnf(Atom,nf(Con,Dis)) :–
subsumesatomcon(Atom,Con); subsumesatomdis(Atom,Dis).

subsumesatomcon(Atom1,Con) :–
member(Atom2,Con), subsumesatomatom(Atom1,Atom2).

subsumesatomdis(Atom,[NF]) :–
subsumesatomnf(Atom,NF).

subsumesatomdis(Atom,[NFjNFs]) :–
subsumesatomnf(Atom,NF), subsumesatomdis(Atom,NFs).

subsumesdis nf(Dis1,nf(Con,Dis2)) :–
subsumesdis con(Dis1,Con); subsumesdis dis(Dis1,Dis2).

subsumesdis con(Dis,Con) :–
member(NF,Dis), subsumesnf con(NF,Con).

subsumesnf con(nf(Con1,Dis),Con2) :–
subsumescon con(Con1,Con2), subsumesdis con(Dis,Con).

subsumescon con([Atom],Con) :–
subsumesatomcon(Atom,Con).

subsumescon con([AtomjAtoms],Con) :–
subsumesatomcon(Atom,Con), subsumescon con(Atoms,Con).

subsumesdis dis([NF],Dis) :–
subsumesnf dis(Nf,Dis).

subsumesdis dis([NFjNFs],Dis) :–
subsumesnf dis(Nf,Dis), subsumesdis dis(NFs,Dis).

Figure 4.5: Reduction of subsumption.

4.1. COMPUTING SUBSUMPTION 47

In the local phase we determine for an object themost specific conceptit in-
stantiates. This can be done by using the standard normalize and compare predi-
cates. Thus we normalize the description of an object thereby obtaining a normal
form and compare it with the normal forms of the concepts in the hierarchy. In ad-
dition to this standard classification we also have to apply rules when processing
objects. This is achieved by applying all rules whose left-hand sides subsume the
object’s normal form. After this application the normal form is again normalized
and classified until no new rules are applicable [Owsnicki-Klewe 88].

In the non-local phase we have to propagate information to other objects.
There are six basic rules for propagation:

o1 :: 8r:c in s;o1 :: r:o2 in s * o2 :: c in s

o1 :: 8r:fo2; :::;ong_ in s;o2 :: c in s; :::;on :: c in s * o1 :: 8r:c in s

o1 :: r:o2 in s;o2 :: c in s * o1 :: rjc:o2 in s

o1 :: r1:o2 in s;o2 :: r2:o3 in s * o1 :: r1.r2:o3 in s

o1 :: f:o2 u f.r:o3 in s * o2 :: r:o3 in s

o1 :: r:o2 in s * o2 :: r�:o1 in s

We will briefly sketch three important aspects of propagation. First, consider the
first rule, calledforward propagation, and the question of how to trigger appli-
cation of this rule. The easiest way of realizing forward propagation is to test
whether an object normal form contains atoms ‘all(R,C)’ and ‘fillers(R,O)’ and
then to propagat ‘C’ to all members of ‘O’.

The problem of this naive approach is that objects can be described incremen-
tally and can be reclassified in the course of porpagation. It would be rather ineffi-
cient to propagate the same value restriction to the same filler over and over again,
whenever some other part of the normal form of the object changes. To avoid
superfluous propagations, only new information at an object can trigger propaga-
tions.

Second, consider the second propagation rule, calledbackward propagation.
For one thing it is advantageous to apply this rule during subsumption checking
rather then during normalization. This is due to the fact ‘c’ is underdetermined
in the propagation rule, i.e. we could try arbitrary concepts and abstract value re-
strictions which will never be used.

Now assume we apply the rule during subsumption checking. This means that
when classifying an object and checking whether it is subsumed by ‘all(R,C)’ we
have to check whether all fillers for ‘R’ are known (i.e. whether ‘R’ is “closed”),
and if so whether all fillers are instances of ‘C’.

Things are further complicated due to incremental descriptions. Assume three
tells in the following order:

48 CHAPTER 4. INFERENCE ALGORITHMS

8r:c1 => c2
o1 :: �1 r u r:o2 in s
o2 :: c1 in s

When classifying o1, we cannot prove that it is an instance of8r:c1 since o2 is
not yet an instance of c1. Hence the rule is not applied. The later description
‘o2 :: c1 in s’, however, makes o1 an instance of8r:c1 and the rule applicable.
Again, a naive implementation in which a change at an object o1 leads to a re-
classification of all objects at which o1 is a role filler is highly inefficient. Instead,
the reclassification of o1 is triggered by an “exploding type bomb”.3

When classifying o1 we record that o1 could not be recognized as an instance
of 8r:c1 since o2 could not be recognized as an instance of c1. Thus as soon as o2
becomes an instance of c1, the type bomb explodes and o1 is reclassified.

Finally, consider the rule for composition. Again, applying it automatically
during normalization leads to the derivation of irrelevant information. TheFLEX

system offers the possibility to turn of propagation rules for specific roles.
These examples where meant to illustrate the complexity of object-level rea-

soning and some of the mechanisms offered byFLEX to reduce its complexity. In
spite of these mechansims object-level reasoning is still rather time-consuming.
algorithm for interpretation presented in The most promising solution to this
efficiency problem consists in a parallelization of propagation as described in
[Bergmann, Quantz 95].

4.2 Computing Default Spaces

In this section we briefly describe an algorithm implementing the proof theory for
weighted defaults developed in Chapter C. The basic functionality of this algo-
rithm is to computedefault situationswith minimal score from a given situation.
This is realized by succesively extending the initial situation, i.e. by recursively

1. determining applicable defaults and

2. applying as many of the applicable defaults as possible

until no defaults are applicable anymore.4 The result of this recursive application
of defaults is thus a situation representing a default space. In a second step alter-
native situations (default spaces) are constructed. The algorithm thus performs a
depth-firststrategy.

The basic data structure used for representing default spaces has the form

def space(ID,Sit,In,Out,Missing,Prev,Score)

3This terminology goes back to Bob MacGregor (personal communication).
4Note that this basic process is similar to the application of strict rules [Owsnicki-Klewe 88].

4.2. COMPUTING DEFAULT SPACES 49

where ‘ID’ is the identifier of the default space and ‘Prev’ is the identifier of the
default space from which it was constructed (this information is used for back-
tracking). ‘Sit’ is the identifier of the default situation containing the information
represented by the default space. ‘In’, ‘Out’, and ‘Missing’ are (ordered) sets of
atoms, where an atom has the form ‘od(Object,Default,Weight)’. Their respectiv
meaning is

od(o,�,w(�)) 2 In) � j�
k o :: �p u �c in s

od(o,�,w(�)) 2 Out) � j�
k o :: �p in s^

� j6�
k o :: �c in s

od(o,�,w(�)) 2 Missing iff � j�
k o :: �p in s^

od(o,�,w(�)) 62 In [Out

Finally, ‘Score’ represents the negative score of the default space, i.e. we have

Score = �od(o,�,wi)2Outwi

The main algorithm for computing default situations is shown in Figures 4.6 and
4.7. I will now briefly describe the functionality of the main predicates and then
illustrate the algorithm by giving an example.

The top-level predicate is ‘computedefaultspaces’, which takes a situation
as input and returns a list of minimal default situations. It stores an initial de-
fault space, then computes a first complete default space, searches for alternative
default spaces, and finally extracts the default situations from the default spaces.

The predicate ‘storespace’ gets most information about the default space
passed as arguments. The only information it computes is the “missing” defaults.
The predicate ‘missingdefaults’ is not shown in the figures, but its realization
can be easily described. We first compute for each object the applicable defaults,
e.g. by retrieving the most specific concepts of the object and computing all su-
per concepts which are left-hand sides of defaults. The missing defaults then are
those which are not yet in the ‘In’ or ‘Out’ lists of the default space.5

Completion of a default space is a recursive process. We successively extend
the space until no defaults are missing anymore. Extension of a default space is
achieved by adding as many of the missing defaults as possible, which is realized
by the predicate ‘addmissing’. This predicate recursively processes the atoms
in ‘Missing’ by calling ‘addatom’. The predicate ‘addatom(od(o,�,w(�)))’ tries
to add the object description ‘o ::�c in s’. If this description can be consistently
added it succeeds (and the respective information is part of ‘Sit’), if it cannot be
consistently added it fails. Depending on the success of ‘addatom’, the atom it-
self is included either in ‘In’ or in ‘Out’, and in the latter case the current score

5Note that this talk of missing defaults is abbreviatory. To be precise we would have to talk
about atoms ‘od(o,�,w(�))’ since this is the format of the members of ‘In’, ‘Out’, and ‘Missing’.

50 CHAPTER 4. INFERENCE ALGORITHMS

computedefaultspaces(Sit,DefSits) :–
storespace(Sit,[],[],nil,0,InitSpace),
completespace(InitSpace,,0,FirstSpace,Score),
alternatives(Space,Score,[Space],BestSpaces,),
extractsits(BestSpaces,DefSits).

storespace(Sit,In,Out,Prev,Score,ID) :–
all sit objects(Sit,Objects),
append(In,Out,Checked),
missingdefaults(Objects,Sit,Checked,[],Missing),
new space(ID),
assert(defspace(ID,Sit,In,Out,Missing,Prev,Score)).

completespace(Space,,Current,Space,Current) :–
ds missing(Space,[]),!.

completespace(Space,BestScore,CurrentScore,FinSpace,FinScore) :–
extendspace(Space,BestScore,CurrentScore,ExtSpace,NewScore),
completespace(ExtSpace,BestScore,NewScore,FinSpace,FinScore).

extendspace(Space,BestScore,CS,ExtSpace,FScore) :–
ds sit in out missing(Space,Sit,In,Out,Missing),
sit extend(Sit,NewSit),
addmissing(Missing,NewSit,In,Out,Space,BestScore,CS,ExtSpace,FScore).

addmissing([],Sit,In,Out,Space,,Score,ExtSpace,Score) :–
storespace(Sit,In,Out,Space,Score,ExtSpace).

addmissing([AtomjAtoms],Sit,In,Out,Space,Best,CS,ESpace,FScore) :–
(addatom(Atom,Sit) ->

NewIn = [AtomjIn],
NewOut = Out,
NewScore = CS;

NewOut = [AtomjOut],
NewIn = In,
Atom = od(, ,Weight),
NewScore is CS + Weight),

scoreokay(NewScore,Best),
addmissing(Atoms,Sit,NewIn,NewOut,Space,Best,NewScore,ESpace,FScore).

Figure 4.6: First part of the default-space algorithm.

4.2. COMPUTING DEFAULT SPACES 51

alternatives(Space,BestScore,BestSpaces,FinSpaces,FinScore) :–
checksisters(Space,BestScore,BestSpaces,NewSpaces,NewScore),
ds prev(Space,PrevSpace),
(PrevSpace = nil ->

FinSpaces = NewSpaces,
FinScore = NewScore;

alternatives(PrevSpace,NewScore,NewSpaces,FinSpaces,FinScore)).

checksisters(Space,BestScore,BestSpaces,FinSpaces,FinScore) :–
in out pattern(Space,In,Out),
next sister(Space,In,Out,BestScore,Sister,NextScore),
integratespace(Sister,NextScore,BestSpaces,BestScore,NewSpaces,NewScore),
alternatives(Sister,NewScore,NewSpaces,FinSpaces,FinScore),
!.

checksisters(,BestScore,Spaces,Spaces,BestScore).

next sister(Space,In,Out,BestScore,FinSpace,FinScore) :–
next(In,Out,NextIn,NextOut),
(build sister(Space,BestScore,NextIn,NextOut,Sister,CurrentScore),
completespace(Sister,Score,CurrentScore,FinSpace,FinScore),!;

next sister(Space,NextIn,NextOut,BestScore,FinSpace,FinScore)).

build sister(Space,BestScore,NextIn,NextOut,Sister,Score) :–
ds prev(Space,Prev),
ds sit in out score(Prev,Sit,In,Out,PrevScore),
addscore(NextOut,PrevScore,Min),
scoreokay(Min,BestScore),
append(Out,NextOut,NewOut),
sit extend(Sit,NewSit),
addmissing(NextIn,NewSit,In,NewOut,Prev,BestScore,Min,Sister,Score).

Figure 4.7: Second part of the default-space algorithm.

52 CHAPTER 4. INFERENCE ALGORITHMS

o :: c1 and not(c3) and c4 and c5 in s
�1: c1 ;10 c2
�2: c2 ;15 c3
�3: c1 ;15 not(c6)
�4: c4 ;10 c6
�5: c5 ;10 c6
�6: c1 ;20 c7
�7: c7 ;20 c8
�8: c6 ;1 not(c8)

Figure 4.8: A sample modeling for illustrating the default-space algorithm.

is increased by ‘w(�)’. Note that before processing the remaining atoms it is
checked whether the current score does not already exceeds the best score ob-
tained so far.

Having computed a first default space, alternatives are checked. In general,
‘alternatives’ receives as input the currently investigated default space, the best
score obtained so far, as well as all default spaces constructed so far with this
best score. It returns a (possibly new) set of optimal default spaces and the cor-
responding score. ‘alternatives’ proceeds in two steps: first the sister nodes of
‘Space’ are evaluated, then backtracking to the previous space is performed and
alternatives of this previous space are computed (recursive call of ‘alternatives’).
The recursion ends when the initial default space is reached (‘PrevSpace = nil’).

The sisters are again evaluated by a depth-first search. A sister is constructed
and completed, then alternatives are checked. Note that ‘nextsister’ fails, if the
respective spaces exceed the best score. The second clause of ‘checksisters’
therefore guarantees successful termination.

Construction of a sister is achieved by ‘nextsister’. The basic idea is to take
the current distribution of ‘Missing’ (in ‘PrevSpace’) into ‘In’ and ‘Out’ (com-
puted by ‘inout pattern’) and to compute the next distribution (‘next’). This
next distribution is passed to ‘buildsister’ which checks the minimal score of
the new distribution and then tries to add as many elements of ‘NextIn’ as pos-
sible (by calling ‘addmissing’). The resulting sister is then completed by ‘com-
pletespace’. If this does not produce a default space with sufficiently low score,
‘next sister’ is called recursively and tries the next distribution.

For illustration consider the example modeling shown in Figure 4.8. In Fig-
ure 4.9 the default spaces generated by the algorithm are shown. To simplify the
presentation the entries for ‘In’, ‘Out’, and ‘Missing’ only contain the defaults
instead of the complex atoms ‘od(o,�,w(�))’. Note that the respective entries are
ordered, i.e. defaults with higher weight precede defaults with lower weight. For

4.2. COMPUTING DEFAULT SPACES 53

ID IN OUT MISSING PREV SCORE
1 ; ; �6; �3; �5; �4; �1 nil 0
2 �6; �3; �1 �5; �4 �7; �2 1 20
3 �7; �6; �3; �1 �2; �5; �4 ; 2 35
4 �6; �3 �5; �4; �1 �7 1 30
5 �7; �6; �3 �5; �4; �1 ; 4 30
6 �6; �5; �4; �1 �3 �7; �2; �8 1 15
7 �6; �5; �4 �3; �1 �7; �8 1 25
8 �7; �6; �5; �4 �3; �1; �8 ; 7 26
9 �6; �5; �1 �3; �4 �7; �2; �8 1 25

10 �6; �4; �1 �3; �5 �7; �2; �8 1 25

Figure 4.9: The default spaces generated for the example in Figure 4.8.

defaults with equal weights, the ordering is obtained from the indices of the de-
faults.

Chapter 5

Future Work

We end this report by briefly indicating current research activities which might
be integrated into future releases of the FLEX system. These activities mainly
address the following issues:

1. test/compute

2. weighted defaults

3. C++ reimplementation

4. graphical user interface

We will integrate descriptions of these extensions in our online-documentation
which is available via the FLEX Home Page (http://www.cs.tu-berlin.de/�flex).

Test/Compute

The current version of the FLEX system already supports the integration of ex-
ternal predicates via the test/compute construct. Though we use these constructs
in our own application there are still a number of open issues which have to be
worked out in detail. The basic idea of the test/compute construct is to realize
functionality not supported by the FLEX representation language as PROLOG
predicates [Kort¨um 93]. Whereas the test construct is used to test whether an ob-
ject satisfies certain conditions, the compute construct is used to compute role
fillers at an object.

The functionality of compute is illustrated by the following example:

vat :< range(number) and feature.
book => compute(vat,bookvat(costs)).

This rule says that the value of the feature ‘vat’ is computed by a PROLOG predi-
cate ‘bookvat’ which takes the value of the feature ‘costs’ as argument. Thus one
has to define this predicate, e.g. as:

54

55

book vat(Vat,[Price]) :–
Vat is Price * 0.07.

Note that the first argument of this predicate is the result, and the other arguments
are the filler lists of the roles/features used in the compute construct.

One of the main design problems in connection with these extensions is to
decide when and how to trigger their application. Our current strategy is to eval-
uate test- and compute constructs at objects whose fillers at the relevant roles are
closed. Otherwise one would risk to obtain different results, e.g. when evaluating
the predicates whenever a new filler is added.

Weighted Defaults

As has been pointed out in Section 3.3, the use of weighted defaults in an appli-
cation poses several problems. The most important ones are briefly listed below:

1. applying defaults is rather complex;

2. determining appropriate weights is not trivial;

3. understanding and querying default information.

There are several sources of complexity in default reasoning. First note that con-
flicts can arise between defataults applicable at different objects:

c1 �m�> all(r,c3)
c2 �n�> not(c3)
o1 :: c1 and r:o2
o2 :: c2

As a consequence, finding the preferred application of defaults is a non-local task
and cannot be performed locally when processing a single object. However, it is
not clear whether such interdependencies between defaults applicable at different
objects will frequently arise in real applications.

Another source of complexity is the computation of maximal default spaces.
In this process object tells ‘o:: c’ are added to a situation and if they are inconsis-
tent, alternatives are generated. In principle, one cannot tell whether two defaults
can be jointly applied at an object by looking at the defaults alone—the conflict
can arise due to information contained in the defaultsand information known at
the object. In cases, however, where the right-hand sides of defaults are disjoint,
one can tell in advance that they will yield a conflict and there is thus no need to
test consistency via object tells.

In our current VERBMOBIL application we use defaults to determine the di-
alogue act of an utterance [Schmitz, Quantz 95]. In this scenario all defaults have

56 CHAPTER 5. FUTURE WORK

a dialogue act as their right-hand side. Since these dialogue acts are mutually dis-
joint, the defaults can be grouped into equivalence classes, each class containing
the defaults which have the same act as conclusion.

In order to determine the dialogue act of an utterance we then compute all
applicable defaults, split them into equivalence classes, and take the dialogue act
whose equivalence class has the heighest weight. Note that this involves just one
object tell and thus avoids the costly computation of alternative situations.

We are currently investigating the theoretical basis of this approach, i.e. the
conditions under which this guarantees a complete and sound solution. We
thereby hope to obtain insights which help to generalize the approach to a more
general setting.

C++ Reimplementation

The developement of “FLEX++”, a rather straight-forward reimplementation of
FLEX in C++, was motivated in the beginning of 1995 by resource constraints,
posed by an application of FLEX within the field of natural language processing.
This application was composed by a large domain model together with exhaustive
use of objects and defaults, so that FLEX required considerable time to perform
its tasks. As a result, we decided to reimplement FLEX using C++ to achieve
a substantial gain in execution speed. Other aspects of the reimplementation are
the reduction of memory complexity (to allow FLEX to run on PC-like computers
instead of workstations) and the efficient management of secondary storage media
(hard disk) to provide persistency.

To achieve these goals, much care has been taken to choose a representation
paradigm that takes advantage of the more flexible data structures of C++ (in
comparison with Prolog) and that allows for further optimizations of the system
behavior. As a result we adopted many of the optimization techniques that proved
their efficiency within FLEX and added a few other ones, that became applicable
due to the more efficient (fine grain) data structure of C++. These new techniques
include:

Incremental Normalization: Generic normalization is avoided in favor of the
process of adding information to already given information. Thus multiple
application of inference rules is avoided.

Ordering Normal Forms: The internal representation of concepts and objects is
ordered with respect to the role hierarchy. This way inheritance of the all,
atleast, atmost and fillers constructs is handled in an efficient way.

Local Caches: The very efficient “==0”-comparison of C++ is used to determine
the existence or non-existence of cached information at many places within

57

the FLEX++ system. Such comparisons are by far less efficient within Pro-
log, so that caching did not pay the effort of comparison.

Structure Sharing: Parts of the internal C++ representation are structure-shared.
This way expensive copy and compare operations are avoided. Instead sim-
ple pointer comparisons are sufficient to determine equality.

In addition to these techniques that are used to optimize the runtime behavior,
considerations have been made concerning the frequency of usage of individual
parts of the internal representation. As a result it turned out that the internal rep-
resentation now consists of only 5 different data structures, which are of fixed
lenght (with exception of sets, that have to be handled specificly). These fixed-
length objects can be stored and retrieved by a conventional relational database.
In contrast to this, the variable-length terms of Prolog require special (and less
efficent) treatment.

Graphical User Interface

We are currently implementing the FLEX GUI. This interface is implemented us-
ing TCL/TK. The interface communicates by TCP/IP with the prolog FLEX pro-
cess.

The main advantage of graphical user interfaces is to make interaction with a
complex system easier. This can be achieved by looking at a system on a higher
level of abstraction and by using some techniques like hypertexts, hierarchies and
graphical editors. FLEX is a DL system with an expressive term description lan-
guage. It offers situated object descriptions and defaults.

The FLEX controller window consists of a main menu and a shell. You can
type in any command accepted by the FLEX system. If FLEX can not solve a
given goal it returns ’no’. In the other case the GUI actualizes its working win-
dows due to the new FLEX system state. Answers are displayed after the excecu-
tion of an entered command.

There are currently three types of working windows. The first window type
displays TBOX definitions or ABOX assertions as hypertexts. The second one
displays concept or role hierarchies in a graphical manner as DAGs. A third type
of window allows you to place objects of the ABOX and establish existing role
links between these objects.

Every working window (ww) has at least the following properties.

� the standard window operations like moving and scaling windows can be
done;

� all operations of the menu FLEX.Windows are applied to ww;

58 CHAPTER 5. FUTURE WORK

� ww.ww-name.quit closes the ww;

� ww.permissions.focus toggles if an other window can focus some entity in
the ww.

TBOX Hypertext windows

These window type is used to see what definitions have been entered into the sys-
tem. The order from the top to the bottom is the assertion time. You can scroll
and search through these definitions. If you enter a concept, role or object all oc-
curences of this entity will be highlighted. Other working windows may focus
definitions if you give local permission to do so.

ABOX Hypertext windows

To open this kind of window you will have to choose a situation from the menu
FLEX.Definitions.abox in situation. As a result only object assertions of this sit-
uation will be shown.

Concept and Role hierarchie windows

Concept- and Role DAGs can be browsed. You can get Information abount single
nodes, hiding subtrees and scaling your view. This is an example how it looks
like:

59

ABOX object-net windows

Objects are displayed as nodes connected by role arrows. It should be possible to
produce a relevant view on the object structures. We are investigating automatic
procedures to produce these views.

configuration

Configuration panels can be used to browse and modify the activation status of
inference rules. Inference rules are odered into classes and offer a description.

help

A HTML based hypertext help window gives information about the GUI itself,
the FLEX system commands and syntax. Help files can also be viewed with nor-
mal WWW browsers.

60 REFERENCES

References

[Baader, Hollunder 92] F. Baader, B. Hollunder, “Embedding Defaults into Ter-
minological Knowledge Representation Formalisms”,KR-92, 306–317

[Baader, Hollunder 93] F. Baader, B. Hollunder,How to Prefer More Specific
Defaults in Terminological Default Logic, IJCAI-93, 669–674

[Baader et al. 92] F. Baader, B. Hollunder, B. Nebel, H.J. Profitlich, E. Franconi,
“An Empirical Analysis of Optimization Techniques for Terminological Rep-
resentation Systems”,KR-92, 270–281

[Barwise, Perry 83] J. Barwise, J. Perry,Situations and Attitudes, Cambridge:
MIT Press, 1983

[Bergmann, Quantz 95] F.W. Bergmann, J.J. Quantz, “Parallelizing Description
Logics”, in I. Wachsmuth, C.-R. Rollinger, W. Brauer (eds),KI-95: Advances
in Artificial Intelligence, Berlin: Springer, 1995, 137–148

[Brachman 77] R.J. Brachman, “What’s in a Concept: Structural Foundations for
Semantic Networks”,International Journal of Man-Machine Studies9, 127–
152, 1977

[Brachman 79] R.J. Brachman, “On the Epistemological Status of Semantic Net-
works”, in N.V. Findler (Ed.),Associative Networks: Representation and Use
of Knowledge by Computers, New York: Academic Press, 1979, 3–50

[Brachman, Levesque 84] R.J. Brachman, H. Levesque, “The Tractability of
Subsumption in Frame-Based Description Languages”,AAAI-84, 34–37

[Brachman, Schmolze 85] R.J. Brachman, J.G. Schmolze, “An Overview of the
KL-ONE Knowledge Representation System”Cognitive Science9, 171–216,
1985

[Brachman et al. 83] R.J. Brachman, R.E. Fikes, H.J. Levesque, “KRYPTON: A
Functional Approach to Knowledge Representation”,IEEE Computer16, 67–
73, 1983

[Brachman et al. 91] R. Brachman, D.L. McGuiness, P.F. Patel-Schneider,
L. Alperin Resnick, A. Borgida, “Living with CLASSIC: When and How to
Use aKL-ONE-like Language”, in J. Sowa (Ed.),Principles of Semantic Net-
works: Explorations in the Representation of Knowledge, San Mateo: Morgan
Kaufmann, 1991, 401–456

[Carpenter 92] B. Carpenter,The Logic of Typed Feature Structures, Cambridge:
Cambridge University Press, 1992

[Collins, Quillian 69] A. Collins, M.R. Quillian, “Retrieval Time from Semantic
Memory”, Journal of Verbal Learning and Verbal Behavior8, 241–248 1969

[Decio et al. 91] E. Decio, P. Petrin, L. Spampinato, “Pushing the Terminological
Barrier”, in M. Lenzerini, D. Nardi, M. Simi (eds),Inheritance Hierarchies
in Knowledge Representation and Programming Languages, Chichester: John
Wiley, 1991, 113–133

REFERENCES 61

[Donini et al. 91a] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, “The Complex-
ity of Concept Languages”,KR’91, 151–162

[Donini et al. 91b] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, “Tractable
Concept Languages”IJCAI-91, 458–463

[Donini et al. 92] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, W. Nutt,
“Adding Epistemic Operators to Concept Languages”,KR-92, 342–353

[Edelmann, Owsnicki 86] J. Edelmann, B. Owsnicki, “Data Models in Knowl-
edge Representation Systems: A Case Study”, in C.-R. Rollinger, W. Horn
(eds),Proceedings of GWAI’86, Berlin: Springer, 1986, 69–74

[Fischer 92] M. Fischer,The Integration of Temporal Operators into a Termino-
logical Representation System, KIT-Report 99, Technische Universit¨at Berlin,
1992

[Franconi 92] E. Franconi, “Collective Entities and Relations in Concept Lan-
guages”, in R. MacGregor, D. McGuiness, E. Mays, T. Russ (eds),AAAI Fall
Symposium’92, Issues in Description Logics: Users meet Developers, 31–35

[Hayes 77] P.J. Hayes, “In Defense of Logic”,IJCAI-77, 559–565
[Hayes 80] P.J. Hayes, “The Logic of Frames”, in D. Metzing (Ed.),Frame Con-

ceptions and Text Understanding, Berlin: de Gruyter, 1980, 46–61
[Heinsohn 91] J. Heinsohn, “A Hybrid Approach for Modeling Uncertainty in

Terminological Logics”, in R. Kruse, P. Siegel (eds),Symbolic and Quantita-
tive Approaches to Uncertainty, Proceedings of the European Conference EC-
SQAU, Berlin: Springer, 1991, 198–205

[Heinsohn, Owsnicki-Klewe 88] J. Heinsohn, B. Owsnicki-Klewe, “Probabilistic
Inheritance and Reasoning in Hybrid Knowledge Representation Systems”, in
[Hoeppner 88], 51–60,

[Hoeppner 88] W. Hoeppner (Ed.),Proceedings of GWAI’88, Berlin: Springer,
1988

[Hoppe et al. 93] T. Hoppe, C. Kindermann, J.J. Quantz, A. Schmiedel, M. Fis-
cher, BACK V 5 Tutorial & Manual, KIT Report 100, Technische Universit¨at
Berlin, 1993

[Kasper 87] B. Kasper, “A Unification Method for Disjunctive Feature Descrip-
tions”, ACL-87, 235–242

[Kindermann 95] C. Kindermann,Verwaltung assertorischer Inferenzen in ter-
minologischen Wissensbanksystemen, PhD Thesis, Technische Universit¨at
Berlin, 1995

[Kobsa 89] A. Kobsa,TheSB-ONE Knowledge Representation Workbench, 1989
[Kortüm 93] G. Kortüm,How To Compute 1+1? A Proposal for the Integration

of External Functions and Computed Roles intoBACK, KIT Report 103, Tech-
nische Universit¨at Berlin, 1993

[MacGregor 91] R. MacGregor, “Using a Description Classifier to Enhance De-
ductive Inference”, inProceedings Seventh IEEE Conference on AI Applica-
tions, 141–147, Miami, Florida, February, 1991

62 REFERENCES

[Minsky 75] M. Minsky, “A Framework for Representing Knowledge”, in
P.H. Winston (Ed.),The Psychology of Computer Vision, New York: McGraw-
Hill, 1975, 211–277

[Nebel 90] B. Nebel,Reasoning and Revision in Hybrid Representation Systems,
Berlin: Springer, 1990

[Owsnicki-Klewe 88] B. Owsnicki-Klewe, “Configuration as a Consistency
Maintenance Task”, in [Hoeppner 88], 77–87

[Patel-Schneider 84] P.F. Patel-Schneider, “Small can be Beautiful in Knowl-
edge Representation”,Proceedings of the IEEE Workshop on Principles of
Knowledge-Based Systems, 11–16, Denver, 1984

[Patel-Schneider 87] P.F. Patel-Schneider,An Approach to Practical Object-
Based Knowledge Representation, Technical Report 68, Schlumberger Palo
Alto Research, 1987

[Quantz 92a] J.J. Quantz, “How to Fit Generalized Quantifiers into Terminologi-
cal Logics”,ECAI-92, 543–547

[Quantz 92b] J.J. Quantz, “A Step Towards Second Order”, in R. MacGregor, D.
McGuiness, E. Mays, T. Russ (eds),AAAI Fall Symposium’92, Issues in De-
scription Logics: Users meet Developers, 78–82, 1992

[Quantz 93] J.J. Quantz, “Interpretation as Exception Minimization”,IJCAI-93,
1310–1315

[Quantz 95] J.J. Quantz, “Preferential Disambiguation in Natural Language Pro-
cessing”, PhD Thesis, Technische Universit¨at Berlin, 1995

[Quantz, Royer 92] J.J. Quantz, V. Royer, “A Preference Semantics for Defaults
in Terminological Logics”,KR-92, 294–305

[Quantz, Schmitz 94] J.J. Quantz, B. Schmitz, “Knowledge-Based Disambigua-
tion for Machine Translation”,Minds and Machines4, 1994, 39–57

[Quantz, Suska 94] J.J. Quantz, S. Suska, “Weighted Defaults in Description
Logics—Formal Properties and Proof Theory”, in B. Nebel, L. Dreschler-
Fischer (eds),KI-94: Advances in Artificial Intelligence, Berlin: Springer,
1994, 178–189

[Quillian 68] M.R, Quillian, “Semantic Memory”, in M. Minsky (Ed.),Semantic
Information Processing, Cambridge (Mass): MIT Press, 1968, 216–270

[Royer, Quantz 92] V. Royer, J.J. Quantz, “Deriving Inference Rules for Termi-
nological Logics”, in D. Pearce, G. Wagner (eds),Logics in AI, Proceedings of
JELIA’92, Berlin: Springer, 1992, 84–105

[Royer, Quantz 93] V. Royer, J.J. Quantz,Deriving Inference Rules for Descrip-
tion Logics: a Rewriting Approach into Sequent Calculi, KIT Report 111,
Technische Universit¨at Berlin, 1993

[Royer, Quantz 94] V. Royer, J.J. Quantz, “On Intuitionistic Query Answering
in Description Bases”, in A. Bundy (Ed.),CADE-94, Berlin: Springer, 1994,
326–340

REFERENCES 63

[Schild 89] K. Schild,Towards a Theory of Frames and Rules, KIT Report 76,
Technische Universit¨at Berlin, 1989

[Schild 91] K. Schild,A Tense-Logical Extension of Terminological Logics, KIT
Report 92, Technische Universit¨at Berlin, 1991

[Schmiedel 90] A. Schmiedel, “A Temporal Terminological Logic”,AAAI’90,
640–645, 1990

[Schmitz, Quantz 95] B. Schmitz, J.J. Quantz, “Dialogue Acts in Automatic Di-
alogue Interpreting”,TMI-95, 33–47

[Schmolze, Israel 83] J. Schmolze, D. Israel, “KL -ONE: Semantics and Classifi-
cation”, inBBN Annual Report, Rep.No. 5421, 27–39, 1983

[Schmolze, Mark 91] J. Schmolze, W.S. Mark, “TheNIKL Experience”,Compu-
tational Intelligence6, 48–69, 1991

[Sundholm 83] G. Sundholm, “Systems of Deduction”, in D. Gabbay, F. Guen-
thner (eds),Handbook of Philosophical Logic, Vol. I: Elements of Classical
Logic, Dordrecht: Reidel, 1983, 133–188

[Suska 94] S. Suska,A Proof Theory for Preferential Default Description Logics,
KIT Report 117, Technische Universit¨at Berlin, 1994

[Vilain 85] M.B. Vilain, “The Restricted Language Architecture of a Hybrid
Representation System”,IJCAI-85, 547–551

[Woods 75] W.A. Woods, “What’s in A Link: Foundations for Semantic Net-
works” in D.G. Bobrow, A.M. Collins (eds),Representation and Understand-
ing: Studies in Cognitive Science, New York: Academic Press, 1975, 35–82

Appendix A

How To Install the FLEX System

The installation of the FLEX System, the current version is now 1.6, and it’s
Graphical User Interface (GUI) can be done by following the sequence of in-
structions below. There are some preconditions before you can install your sys-
tem properly. This software has been developed on aSparc compatible hard-
ware. As your operating system you should runSolaris SunOS 5.3. If you
haveQuintus Prolog 3.1.4 or 3.2installed, this software will also run with older
SunOS versions. To use the FLEX GUI you must be able to run X11 Version
X11R6 or Open Windows. Additional online infomation can be found online at
http://www.cs.tu-berlin.de/�flex. Here you can find software updates and lastest
news about the system.
To obtain the latest FLEX System1 package just connect to our FTP server. The
following releases will also be available at this site.

> ftp ftp.cs.tu-berlin.de
> Name: anonymous
> Password: <enter your email adress>
> cd pub/local/kit/software/FLEX
> get flex1.6.tar.gz

Now you are able to create you personal FLEX directory, unpack the system and
to install it.

> mkdir ˜/FLEX % only an example directory
> mv flex1.6.tar.gz ˜/FLEX
> cd ˜/FLEX
> gunzip flex1.6.tar.gz
> tar -xvf flex1.6.tar
> ./install % do the installation ...

1The following describes how to get the current version 1.6

64

65

The following directories will be created :

BIN/{flex.prog,f} % FLEX-shell (solaris runtime or
Quintus saved state)

CONFIG/
GUI/ % tcl source code GUI
PL/ % FLEX prolog code
TESTS/ % FLEX test suite
TMP/
DOCU/ % Documentation

Please remove the .tar files if installation was successful and enter the following
definitions:

setenv FLEX_SYSTEM_PATH ˜/FLEX % Example
set path=(˜/FLEX/BIN $path)
setenv LD_LIBRARY_PATH /usr/X11/lib % or where ever

% libX11.so.??? is

If you use OpenWindows you should set the following:

setenv OPENWINHOME /usr/openwin

Now you can call the FLEX System with one of these commands.

˜/FLEX/BIN/f % if you have Quintus
˜/FLEX/BIN/flex.prog % as stand alone

The graphical user interface is called from the FLEX shell. Just type the following
command an wait for the GUI main window.

| ?- gui.

Call the GUI from the FLEX shell :

| ?- gui.

If nessesary, please modify the first 3 Lines of the Makefile in FLEX/GUI/COMP/
to compile flexgui prog’ properly.
You can call the main Makefile directly with the following targets :

flex: # target : make flex and dump f
gui: # target : make graphical user interface
flex_runtime: # target : make flex stand alone (nearly)

Appendix B

FLEX Syntax

Interaction

hinteractioni ::= flexinit
j flextell(htell-expressioni)
j flexask(hask-expressioni[,box=hboxi])
j flexget(hentityi,hmethodi,[hoptionsi,]PROLOG-VAR)
j flexstate(hstatei)
j flexread(hfile-NAME i)
j flexdump(hfile-NAME i[,Comment])
j flexload(hfile-NAME i)

hstatei ::= verbosity = silent
j verbosity = error
j verbosity = warnings
j verbosity = info
j verbosity = trace
j introduction = forward
j introduction = noforward
j classobjects= on
j classobjects= off
j defspacedbox = best
j defspacedbox = all
j syntax check= on
j syntax check= off

66

67

Tell/Ask Expressions

htell-expressioni ::= hdefinitioni
j hrule i
j hdescriptioni
j hdefaulti
j hdisjointnessi
j hsit-extensioni
j hmacro-definitioni

hdefinitioni ::= hterm-NAME i := htermi[with filter =hfilter-list i]
j hterm-NAME i :< htermi[with filter =hfilter-list i]

hrule i ::= hconcepti => hconcepti

hdefaulti ::= hconcepti�hINTEGERi�> hconcepti

hdescriptioni ::= hobject-NAME i :: hconcepti[in hsit-refi]
j PROLOG-VAR :: hconcepti[in hsit-refi]

hdisjointnessi ::= hconcept-NAME i<> hconcept-NAME i

j <> ‘[’ hconcept-NAME if,hconcept-NAME ig�‘]’

hsit-extensioni ::= hsit-NAME i<<= hsit-refi

hmacro-definitioni ::= hmacroi �= htermi
hmacroi ::= hmacro-NAME i[(PROLOG-VARf,PROLOG-VARg�)]

hask-expressioni ::= htermi ?< htermi
j hobject-NAME i ?: hconcepti[in hsit-NAME i]
j PROLOG-VAR ?: hconcepti[in hsit-NAME i]
j disjoint (htermi,htermi)
j subsumes(htermi htermi)
j equivalent(htermi,htermi)
j incoherent(htermi)
j satisifes(hterm-NAME i,hfilter-list i)

68 APPENDIX B. FLEX SYNTAX

Terms

hentityi ::= htermi
j hvaluei

htermi ::= hconcepti
j hrole i

hvaluei ::= hobject-NAME i

j hnumber-INSTANCE i

j hstring-INSTANCE i

Concept Terms

hconcepti ::= hconcept-NAME i

j hnumberi
j string
j hmacro-NAME i

j ctop j anything
j cbot j nothing
j prim (hconcept-NAME i)
j hconcepti and hconcepti
j hconcepti or hconcepti
j not(hconcepti)
j all(hrolei,hconcepti)
j the(hrolei,hconcepti)
j some(hrole i[,hconcepti])
j no(hrolei[,hconcepti])
j atleast(hINTEGERi,hrole i[,hconcepti])
j atmost(hINTEGERi,hrole i[,hconcepti])
j exactly(hINTEGERi,hrole i[,hconcepti])
j hrole i:hvaluei j hrole i:‘[’ hvalueif,hvalueig�‘]’
j hrole i:htermi
j rvm equal(hrolei,hrole i)
j oneof(‘[’ hobject-NAME if,hobject-NAME ig�‘]’)
j rvm inst(hrolei,hrole i)

69

Role Terms

hrolei ::= hrole-NAME i

j rtop j anyrole
j rbot j nothing
j hrole i and hrole i
j hrole i or hrole i
j not(hrolei)
j prim (hrole-NAME i)
j domain(hconcepti)
j range(hconcepti)
j inv(hrolei)
j hrole i comp hrole i
j feature
j term valued

Number Terms

hnumberi ::= number
j hnumber-NAME i

j hnumber-rangei
j hnumber-INSTANCE i

hnumber-rangei ::= hlower-limiti
j hupper-limiti
j hnumber-INSTANCE i.. hnumber-INSTANCE i

hlower-limiti ::= gt(hnumber-INSTANCE i)
j ge(hnumber-INSTANCE i)

hupper-limiti ::= lt (hnumber-INSTANCE i)
j le(hnumber-INSTANCE i)

70 APPENDIX B. FLEX SYNTAX

Methods

hmethodi ::= all(hrolei[,hsit-NAME i])
j atleast(hrolei[,hconcepti] [,hsit-NAME i])
j atmost(hrolei[,hconcepti] [,hsit-NAME i])
j concepts(hsit-NAME i)
j dir subs
j dir supers
j domain
j equivalents
j fillers(hrolei[,hsit-NAME i])
j filter
j help
j instances(hsit-NAME i)
j msc(hsit-NAME i)
j range
j subs
j supers
j tvf filler (hrolei[,hsit-NAME i])

hoptionsi ::= box=hboxi
j filter =hfilter-list i

hboxi ::= rules
j defaults

hfilter-list i ::= hfilter-NAME i

j ‘[’ hfilter-NAME if,hfilter-NAME ig�‘]’

hsit-refi ::= hsit-NAME i

j PROLOG-VAR

Appendix C

FLEX Semantics

In this chapter we specify a formal semantics for FLEX. We begin by specifying
the semantics of the basic DL, then specify a preferential semantics for weighted
defaults, and finally present a proof theory for weighted defaults. The presenta-
tion is largely based on [Quantz 95].

C.1 The Basic DL

For the specification of a formal semantics we use a formal syntax, as specified
below:

c ::= > j ? j cp j cn j : c j c1 u c2 j c1 t c2 j kc j f2fc
j �n r:c j �n r:c j 8r:c j r1=r2 j r:o j fo1; :::;omg_

j fc:c j fr:r j >n j n j > n j � n j < n j � n j n1::n2
r ::= >r j ?r j rp j rn j : r j r1 u r2 j r1 t r2 j kr

j cjr j rjc j r1.r2 j r�

 ::= c1 v c2 j r1 v r2 j o :: c in s, s1 � s2

Note that this syntax implicitly assumes the existence of basic sets from which
constants such as cp, fc, rn, s1, or om are taken. The following definition makes
these sets explicit.

Definition 1
A DL alphabet is a 10-tupleA = hCp; Cn;Rp;Rn;Fp;Fn;F

c
p;F

r
p ;O;Si, where

71

72 APPENDIX C. FLEX SEMANTICS

Cp is a finite set of primitive concepts
Cn is a finite set of concept names
Rp is a finite set of primitive roles
Rn is a finite set of role names
Fp is a finite set of primitive features
Fn is a finite set of feature names
F c
p is a finite set of primitive concept-valued features

F r
p is a finite set of primitive role-valued features
O is a finite set of objects
S is a finite set of situtations

Given such an alphabet and the syntax of theDL, sets of concepts, roles, infons,
propositions,and formulae are implicitly determined. The following definition
contains an explicit inductive characterization of terms.

Definition 2 LetA = hCp; Cn;Rp;Rn;Fp;Fn;F
c
p;F

r
p ;O;Si be aDL alphabet.

The set of concepts
C, the set ofconcept expressionsCe, the set ofrolesR, the set offeaturesF ,
the set ofconcept-valued featuresF c, and the set ofrole-valued featuresF r,
are inductively defined as the smallest sets satisfying the following constraints:
1: Cn [Cp � C Rn [Rp [F � R Fn [Fp � F

F c
p � F c

F r
p � F r

2: N0 [f>;?;>ng � C f>r;?rg � R

3: If o;o1; : : : ;om 2 O n; n1; n2 2 N0 f; f1; f2 2 F

c; c1; c2 2 C r; r1; r2 2 R fc 2 F c

c 2 C fr 2 F r

then
:c 2 C :r 2 R

c1 u c2 2 C r1 u r2 2 R f u r 2 F

c1 t c2 2 C r1 t r2 2 R

8r:c 2 C cjr 2 R cjf 2 F

�n r:c 2 C rjc 2 R fjc 2 F

�n r:c 2 C r1:r2 2 R f1:f2 2 F

r:o 2 C r� 2 R

r1 = r2 2 C cjfc 2 F c

fo1; : : : ;omg_ 2 C cjfr 2 F r

fc:c 2 C f:fc 2 F c

fr:r 2 C f:fr 2 F r

f 2 fc 2 C

f> n;� ng � C

f< n;� ng � C

n1::n2 2 C

C.1. THE BASIC DL 73

The set ofepistemic conceptsCk, the set ofepistemic rolesRk, and the set
of epistemic featuresFk are inductively defined as the smallest sets satisfying
the constraints obtained by substitutingC by Ck, R by Rk, and F by Fk in
the above constraints and addingkc 2 Ck; kr 2 Rk; kf 2 Fk in the
‘then’ part of the third condition.

Note that according to these definitions the features are a subset of the roles (F �

R) and nonepistemic terms are a subset of epistemic terms (e.g.C � Ck).
The distinctions made between these sets will be used in the definition of dif-

ferent sets of formulae.

Definition 3 Let A = hCp; Cn;Rp;Rn;Fp;Fn;F
c
p;F

r
p ;O;Si be a DL alphabet

determining the setsC, Ck, andR. The sets ofnonepistemic object descrip-
tions (assertional formulae)��, epistemic object descriptions��, definitions
��, rules ��, situation extensions��, andsubsumptions(terminologial formu-
lae)�� are defined as follows:

��
def
= fo :: c in s : o 2 O; c 2 C; s2 Sg

��
def
= fo :: c in s : o 2 O; c 2 Ck; s2 Sg

��
def
= fcn

:
= c : cn 2 Cn; c 2 Cg [

frn
:
= r : rn 2 Rn; r 2 Rg [

ffn
:
= f : fn 2 Fn; f 2 Fg

��
def
= fc1) c2 : c1; c2 2 Cg

��
def
= fs1 � s2 : s1; s2 2 Sg

��
def
= fc1 v c2 : c1; c2 2 Cg [

fr1 v r2 : r1; r2 2 Rg [

ff1 v f2 : f1; f2 2 Fg

This distinction between different types of formulae is useful since we will allow
different types of formulae forDL tells andDL queries, respectively.

Definition 4 A DL knowledge baseis a pairK = hA;�i, whereA is a DL alpha-
bet and� is a DL modeling, i.e. a subset of�� [�� [�� [��. Given such a
modeling we define

��
def
= � \ ��

��
def
= � \ ��

��
def
= � \ ��

��
def
= � \ ��

�� is called theterminology and must satisfy the following two conditions:

74 APPENDIX C. FLEX SEMANTICS

1. For each tn 2 Cn [Rn [Fn there is exactly one definition tn
:
= t 2 ��.

2. the definitions in�� can be totally ordered such that for each tn’ occurring
on the right-hand side of a definition tn

:
= t, we have tn’ :

= t’ < tn
:
= t.

These conditions guarantee non-cyclicity of the terminology.

So far we have only dealt with syntactic characterizations. We will now define the
semantics of the coreDL.

Definition 5 Let A be a DL alphabet. Amodel overA is a three-tupleM =

hD;I;Wi, whereD is a set called thedomain, W is a set ofinterpretation
functions, andI 2 W. If J is an interpretation function it satisifies the following
constraints:

o 2 O) [[o]]J 2 D

[[o1]]J = [[o2]]J) o1 = o2
cp 2 Cp; s2 S) [[cp; s]]

J
� D

rp 2 Rp; s2 S) [[rp; s]]J � D �D

fp 2 Fp; s2 S) [[fp; s]]
J
� D �D

hd1; d2i 2 [[fp; s]]
J ; hd1; d3i 2 [[fp; s]]

J
) d2 = d3

fcp 2 F c
p; s2 S) [[fc; s]]J � D � (2D n ;)

hd1; A1i 2 [[fc; s]]
J ; hd1; A2i 2 [[fc; s]]

J
) A1 = A2

frp 2 F
r
p ; s2 S) [[fr; s]]

J
� D � (2D�D n ;)

hd1; B1i 2 [[fr; s]]J ; hd1; B2i 2 [[fr; s]]J) B1 = B2

Furthermore, ifJ is an interpretation function,W is a set of interpretation func-
tions, c; c1; c2 2 Ck, cp 2 Cp, r; r1; r2 2 Rk, rp 2 Rp, fp 2 Fp, fc 2 F c, fcp 2 F c

p,
fr 2 F r, frp 2 F r

p , o;o1; :::;om 2 O, s2 S, n 2 N0, d; d1; d2 2 D and given the
following abbreviations:

[[r; s]]J ;W(d1)
def
= fd2 2 D : hd1; d2i 2 [[r; s]]J ;Wg

[[fc; s]]J ;W(d)
def
= the setA � D such thathd;Ai 2 [[fc; s]]J ;W

[[fr; s]]
J ;W(d)

def
= the setB � (D �D) such thathd;Bi 2 [[fr; s]]

J ;W

then the following constraints have to be satisfied:

[[>]]J ;W = D

[[?]]J ;W = ;

[[cp; s]]J ;W = [[cp; s]]J

[[:c; s]]J ;W = D n [[c; s]]J ;W

C.1. THE BASIC DL 75

[[c1 u c2; s]]
J ;W = [[c1; s]]

J ;W
\ [[c2; s]]

J ;W

[[c1 t c2; s]]
J ;W = [[c1; s]]

J ;W
[[[c2; s]]

J ;W

[[kc; s]]J ;W =
\

J 02W

[[c; s]]J
0;W

[[�n r:c; s]]J ;W = fd : j[[r; s]]J ;W(d) \ [[c; s]]J ;Wj � ng

[[�n r:c; s]]J ;W = fd : j[[r; s]]J ;W(d) \ [[c; s]]J ;Wj � ng

[[8r:c; s]]J ;W = fd : [[r; s]]J ;W(d) � [[c; s]]J ;Wg

[[r1 = r2; s]]J ;W = fd : [[r1; s]]J ;W(d) = [[r1; s]]J ;W(d)g

[[f 2 fc; s]]J ;W = fd : [[f; s]]J ;W(d) � [[fc; s]]J ;W(d)g

[[r:o; s]]J ;W = fd : [[o]]J ;W 2 [[r; s]]J ;W(d)g

[[fo1; : : : ;omg_; s]]J ;W = f[[o1]]J ; : : : ; [[om]]Jg

[[f3:c; s]]
J ;W = fd : [[fc; s]]

J ;W(d) � [[c; s]]J ;Wg

[[fr:r; s]]
J ;W = fd : [[fr; s]]

J ;W(d) � [[r; s]]J ;Wg

[[>n; s]]J ;W = N0

[[n; s]]J ;W = n

[[> n; s]]J ;W = fm 2 N0 : m > ng

[[� n; s]]J ;W = fm 2 N0 : m � ng

[[< n; s]]J ;W = fm 2 N0 : m < ng

[[� n; s]]J ;W = fm 2 N0 : m � ng

[[n1::n2; s]]J ;W = fm 2 N0 : n1 � m � n2g

[[>r; s]]J ;W = D �D

[[?r; s]]J ;W = ;

[[rp; s]]J ;W = [[rp; s]]J

[[:r; s]]J ;W = (D �D) n [[r; s]]J ;W

[[r1 u r2; s]]J ;W = [[r1; s]]J ;W \ [[r2; s]]J ;W

[[r1 t r2; s]]
J ;W = [[r1; s]]

J ;W
[[[r2; s]]

J ;W

[[kr; s]]J ;W =
\

J 02W

[[r; s]]J
0;W

[[cjr; s]]
J ;W = [[r; s]]J ;W \ ([[c; s]]J ;W �D)

[[rjc; s]]
J ;W = [[r; s]]J ;W \ (D � [[c; s]]J ;W)

[[r1:r2; s]]J ;W = [[r1; s]]J ;W � [[r2; s]]J ;W

[[r�; s]]J ;W = fhd1; d2i : hd2; d1i 2 [[r; s]]J ;Wg

[[fp; s]]J ;W = [[fp; s]]J

[[fcp; s]]J ;W = [[fcp; s]]J

[[frp; s]]
J ;W = [[frp; s]]

J

76 APPENDIX C. FLEX SEMANTICS

Finally we have the constraint

8I;J 2 W;8o2 O [[o]]I = [[o]]J

After all these preliminaries we can now define satisfaction of a knowledge base
by a model:

Definition 6 LetK = hA;�i be a knowledge base andM = hD;I;Wi a model
overA. M is a model of� (M j=k �) iff 8J 2 W

[[o]]J 2 [[c; s]]J ;W 8o :: c in s2 ��

[[tn; s]]J ;W = [[t; s]]J ;W 8tn
:
= t 2 ��;8s2 S

[[kc1; s]]
J ;W

� [[kc2; s]]
J ;W

8c1) c2 2 ��;8s2 S

[[kc; s1]]J ;W � [[kc; s2]]J ;W 8s1 � s2 2 ��;8c 2 C

In the following we will writeM j=k o :: c in s (for o :: c in s 2 ��) iff 8J 2

W[[o]]J 2 [[c; s]]J ;W.

On the basis of this definition we can already define entailment of nonepistemic
queries:

Definition 7 LetK = hA;�i be a knowledge base, o :: c in s2 ��, and t1 v t2
2 ��:

� j= o :: c in s iff in every modelM of � we haveM j=k o :: c in s

� j= t1 v t2 iff in every modelM of �8s 2 S [[t1; s]]
I;W

� [[t2; s]]
I;W

Note that for defining entailment of epistemic queries we need to ensure maximal-
ity of W. For reasons that will become obvious below we will define maximality
by using techniques from preferential model theory.

C.2 A Preferential Semantics for Weighted Defaults

In this section we will present a Preferential Default Description Logic (PDDL)
based on weighted defaults. ThisPDDL differs from the one developed in
[Quantz, Suska 94] in two respects:

1. the semantics is modified to take into account the situated descriptions used
in the coreDL.

2. thek operator is used to weaken the semantics in such a way that weighted
defaults behave as forward-chaining trigger rules instead of as material im-
plications.

C.2. A PREFERENTIAL SEMANTICS FOR WEIGHTED DEFAULTS 77

Whereas the first modification has no impact on the formal properties of the re-
sulting preferential entailment relation, the second modification “destroys” formal
properties asOr or Rational Monotonicity. The advantage of the weakened se-
mantics is that it yields a proof theory which has better computational properties
in the average case.

The basic idea of preferential semantics is to use orderings on models for the
definition of nonmonotonic preferential entailment relations. Whereas strict in-
formation divides the set of models into two subsets, namely those models sat-
isfying the information and those not satisfying it, default information is used to
establish a fine grained ordering on models.

We begin by defining entailment of epistemic descriptions:

Definition 8 LetA be aDL alphabet andM = hD1;I;W1i, N = hD2;J ;W2i

two models overA. N is epistemically preferred overM (M <
k N) iff

1. D1 = D2

2. I = J

3. W1 �W2

Given this ordering on models we define<k-maximal models for knowledge
bases:

Definition 9 LetK = hA;�i be a knowledge base andM a model overA. M is
a<k-maximal model of� iff

1. M is a model of� and

2. there is no modelN of � withM <
k N

Entailment of epistemic descriptions is then defined by taking into account only
the<k-maximal models:

Definition 10 LetK = hA;�i be a knowledge base and 2 ��.

� j�k
 iff for all <k-maximal modelsM of � we haveM j=k

The effect of<k is easily illustrated by considering the following example:

M1 = hfd1; d2g;I; fIgi

M2 = hfd1; d2g;I; fI;Jgi

[[o1]]
I = d1

[[o2]]I = d2

[[r; s]]I = fhd1; d2i; hd1; d1ig

78 APPENDIX C. FLEX SEMANTICS

[[o1]]
J = d1

[[o2]]
J = d2

[[r; s]]J = fhd1; d2ig

M1 <
k M2

M1 6j=k o1 :: �1 kr in s

M2 j=k o1 :: �1 kr in s

It should be noted, however, that for noepistemic descriptionsj�
k is identical to

strict entailment.
Having defined entailment of epistemic descriptions we will now define en-

tailment based on weighted defaults. The syntactic format of weighted defaults is
similar to the format used for rules.

Definition 11 Let A be a DL alphabet. Aweighted default � has the form
c1;n c2, where c1 and c2 are nonepistemic concepts, i.e. elements ofC, andn
is a natural number. We call c1 the premise of� (written �p), c2 its conclusion
(written�c) andn its weight (writtenw(�)).

In contrast to strict rules, weighted defaults allow for exceptions. The weight of a
default is a measure of the likelihood of such an exception—the higher the weight,
the less likely an exception.

Definition 12 LetA be aDL alphabet,� a weighted default, s a situation, andM
a model overA. Theepistemic exceptionsto � wrt s inM are defined as

Ek
M(�; s) def

= fo 2 O : [[o]]I 2 [[k�p; s]]
I
^ [[o]]I 62 [[k�c; s]]

I;W
g

In the following we will define a preferential semantics based on epistemic excep-
tions. It should be obvious how the corresponding definitions look for nonepis-
temic exceptions (see [Quantz, Suska 94] for details).

Given the exceptions to a default and its weight, we can assign negative scores
to situations:

Definition 13 LetA be aDL alphabet,M a model overA, s a situation, and� a
finite set of weighted defaults. Thenegative scoreofM for s is defined as

score�k (M; s) def
=
X

�2�

(jEk
M(�; s)j � w(�))

We can then order models wrt the negative score they obtain for situations.

Definition 14 LetA be aDL alphabet andM , N two models overA.
�-preferenceis defined as

M <
k
� N iff 1:8sscore�k (M) � score�k (N)

2:9s score�k (M) > score�k (N)

C.3. A PROOF THEORY FOR WEIGHTED DEFAULTS 79

Note that this ordering on models is independent from any set of strict formulae�

and only takes into account� andO. Given some set�, we define<k
�-maximal

models of�.

Definition 15 LetK = hA;�i be a knowledge base andM a model overA. M
is a<k

�-maximal model of� iff M is a model of� and there is no modelN of �
such thatM <

k
� N .

In the definition of the preferential entailment relationj�k

�
only <k

�-maximal
models are taken into account:

Definition 16 LetK = hA;�i be a knowledge base,� a finite set of weighted
defaults,<k

� the corresponding ordering on models overA, and 2 ��. is
�-entailedby� and� (written�;� j�

k

�
) iff for all <k

�-maximal modelsM of
� we haveM j=k .

For examples of the behavior ofj�k

�
and its formal properties see [Quantz 95].

C.3 A Proof Theory for Weighted Defaults

In this section we develop a proof theory forj�k

�
and show that it is decidable if

the underlyingDL is. The proof theory and its presentation is basically an adap-
tion of the ideas developed in [Quantz, Suska 94] to the epistemic case.

The main idea underlying the proof theory forPDDL aredefault spaces, which
can be intuitively characterized as compact syntactic representations of models.
In analogy to the techniques used in the preferential semantics we can score and
order default spaces and thereby obtain maximal default spaces. The nonmono-
tonic entailment relationj�k

�
can then be reduced to strict entailment from maxi-

mal default spaces.

Definition 17 Let hA;�;�i be a default modeling. We define a set ofdefault
atomsA� as follows:

Ap
def
= fo :: �p in s : o 2 O; � 2 �; s2 Sg

Ac
def
= fo :: �c in s : o 2 O; � 2 �; s2 Sg

A�
def
= Ap [Ac

Any subset ofA� is called adefault spaceS.

In analogy to the scoring of models we assign each defaul space a negative score.

80 APPENDIX C. FLEX SEMANTICS

Definition 18 Let hA;�;�i be a default modeling and S a default space. The
exceptionsof S are defined as

ES(�; s)
def
= fo : o :: �p in s2 S ^ o :: �c in s 62 Sg

Thenegative scoreof S is defined as

score�k (S; s)
def
=
X

�2�

(jES(�; s)j � w(�))

score�k (S)
def
=
X

s2S
score�k (S; s)

Definition 19 Let hA;�;�i be a default modeling and S a default space. S is
�-closediff

1. � [S is consistent;

2. 8� 2 A�� [S j= �, � 2 S.

Obviously, a maximal default space is one which is�-closed and has minimal
negative score.

Definition 20 Let hA;�;�i be a default modeling and S a default space. S is
<
k
�-maximal wrt � iff

1. S is�-closed;

2. there is no�-closed default space S’ withscore�k (S
0) < score�k (S).

We now define for each model the corresponding default space.

Definition 21 Let hA;�;�i be a default modeling andM a model of�.

SM
def
= fo :: �p in s : [[o]]I 2 [[k�p; s]]

I;W
g [

fo :: �c in s : [[o]]I 2 [[k�c; s]]I;Wg

It is straightforward to prove that a model and its default space have the same
negative score.

Lemma 1 Let hA;�;�i be a default modeling,M a model of�, andSM its de-
fault space.

score�k (M) = score�k (SM)

C.3. A PROOF THEORY FOR WEIGHTED DEFAULTS 81

Proof:

score�k (M) =
X

s2S
score�k (M; s)

=
X

s2S

X

�2�

(jEk
M(�; s)j � w(�))

=
X

s2S

X

�2�

(jESM (�; s)j � w(�))

=
X

s2S
score�k (SM ; s)

= score�k (SM)

The nontrivial step is the equivalence betweenEk
M (�; s) andESM (�; s):

Ek
M (�; s) = fo 2 O : [[o]]I 2 [[k�p,s]]

I;W
^ [[o]]I 62 [[k�c; s]]

I;W
g

= fo 2 O : o :: �p in s2 SM ^ o :: �c in s 62 SMg

= ESM (�; s)

2

For the non-epistemic semantics it was possible to establish a correspondence
between maximal default spaces and maximal models such that all models of a
maximal default space are maximal models. This is not possible forj�

k

�
, however.

The reason is basically that a default space can be underdetermined wrt a default.
Consider a default�, a situation s, an object o, and the default spaces

S1 = ;

S2 = fo :: �p in sg

S3 = fo :: �c in sg

S4 = fo :: �p in s;o :: �c in sg

The first thing to note is thatS1, S2, andS4 have the same score and are all better
thanS2. Secondly, all models ofS4 are models ofS1, S2, andS3, and all models
of S2 andS3 are models ofS1. Thus if S1 is a<k

�-maximal default space, it
has models which are not necessarily maximal (namely the ones ofS2). We can
prove, however, that any description satisfied in all maximal models of a maximal
default space is also satisfied in all its non-maximal models.

To do so we need the following lemma:

Lemma 2 LetA be aDL alphabet, o :: c in s2 ��, andM = hD1;I;W1i N =

hD2;J ;W2i two models overA.

If M <
k N then N j=k o :: c in s)M j=k o :: c in s

82 APPENDIX C. FLEX SEMANTICS

Proof:

N j=k o :: c in s iff 8J
0
2 W2[[o]]J

0

2 [[c; s]]J
0;W2

) 8J
0
2 W1[[o]]

J 0

2 [[c; s]]J
0;W1 (W1 � W2)

iff M j=k o :: c in s

2

We can now prove that any description satisfied in all maximal models of a maxi-
mal default space is also satisfied in all its non-maximal models.

Lemma 3 LetK� = hA;�;�i be a default modeling, 2 ��, S a<k
�-maximal

default space wrtK�, andM a model of S.

1. M is<k
�-maximal or

2. there is a<k
�-maximal modelN of S with

N j=k)M j=k

Proof: SupposeM is not<k
�-maximal, i.e. we have a modelM 0 with M <

k
�

M 0. Clearly, there must be at least one o,�, s, such that

M j=k o :: �p and not(�c) in s

M 0
6j=k o :: �p and not(�c) in s

SinceM is a model of S we also know that o ::�c in s 62 S. Hence we can con-
struct a modelN fromM by adding toW an interpretation functionJ with

[[o]]J 2 [[�p; s]]
J ;W

^ [[o]]J 2 [[�c; s]]
J ;W

We can do so for all o,�, s causing non-maximality ofM and thereby obtain a
<
k
�-maximal modelN . Furthermore we haveM <

k N and thusN j=k)

M j=k (Lemma 2). 2

Furthermore we can prove that the default space of a<
k
�-maximal model is a

<
k
�-maximal default space:

Lemma 4 LetM be a<k
�-maximal model.SM is a<k

�-maximal default space.

Proof: From Lemma 1 we know thatM andSM have the same negative score.
Thus ifM is<k

�-maximal,SM must be<k
�-maximal too. 2

With these lemmata we can finally prove thatj�
k

�
can be reduced to strict en-

tailment from all maximal default spaces.

Proposition 1 Let hA;�;�i be a default modeling and 2 ��.

�;� j�
k

�
 iff � [S j=

in all <k
�-maximal default spaces S over�

C.3. A PROOF THEORY FOR WEIGHTED DEFAULTS 83

Proof: (if) We have to prove that� [S j= in all <k
�-maximal default spaces

S over� implies�;� j�
k

�
, i.e. thatM j=k for all <k

�-maximal models of�.
Let M be such a<k

�-maximal model of�. From Lemma 4 we know thatSM
is a<k

�-maximal default space and thus� [S j= , i.e. in all modelsN of � [S
we haveN j=k . M clearly is a model of� [S, henceM j=k .

(only if) We have to prove that�;� j�
k

�
 implies� [S j= in all <k

�-
maximal default spaces, i.e. all modelsM of � [S must satisfyM j=k .

Let S be such a<k
�-maximal default space andM any model of� [S. From

Lemma 3 we know thatM is either a<k
�-maximal model or we have a<k

�-
maximal modelN with N j=k) M j=k . Since we know from the premise
that for all<k

�-maximal modelsL we haveL j=k , we getM j=k in both
cases. 2

A couple of remarks seem in order. First, this proposition shows thatj�
k

�
is

decidable if the underlyingDL is. SinceO, S, and� are finite, there are only
finitely many default spaces. To determine the maximal ones, we only have to
check consistency in the underlyingDL, more precisely, we have to enumerate all
possible default spaces and pick the consistent sets with lowest score.

It is easy to see, however, that the number of default spaces is exponential,
namely2jOj�j�j�jSj. Not all default spaces have to be considered by the algorithm,
but even the number of maximal ones can, in the worst case, be exponential.
(Consider a case when all sets of cardinality> (jOj � j�j)=2 are inconsistent,
all the others are consistent.) Since maximal default spaces cannot be subsets of
each other, their number is bounded byn!=(n DIV 2)!, wheren = jOj � j�j.1

Finally the proof theory can be further simplified, namely by restricting it to
non-redundantdefault spaces, thereby considerably reducing the average com-
plexity of the algorithm presented in Section 4.2:

Definition 22 Let hA;�;�i be a default modeling and S a maximal default
space. S is callednon-redundant iff there is no maximal default space S’ with
S0 � S.

It is obvious that the formulae entailed by all non-redundant default spaces are the
same as those entailed by all maximal default spaces:

Lemma 5 Let hA;�;�i be a default modeling and 2 ��.

� [S j= iff � [S j=

for all maximal default spaces S for all non-redundant default spaces S

1In [Suska 94] it is shown that even if the number of maximal default spaces is polynomially
bounded, no algorithm can guarantee computation in polynomial time.

84 APPENDIX C. FLEX SEMANTICS

Proof: Obviously,� [Si j= for i = 1; :::; n iff � [(S1 \ ::: \ Sn) j= .
Redundant default spaces can thus be dropped from the conjunction since clearly
S1 � S2) S1 \ S2 = S1. 2

Note that this result means that a simple forward-chaining strategy is sufficient in
the construction of maximal default spaces, i.e. if� 6j= o :: �p in s we can ignore
the default� at object o in situation s (see Section 4.2 for details).

Appendix D

FLEX Manual

This chapter describes the syntax ofFLEX in detail. In general, every entry in
this manual consists of a heading line consisting of the construct’s name1 and a
grouping keyword. In the case that several constructs have the same name (e.g.
domain) we group them together. Entries consist of a short summary of the
construct, its syntax in BNF, its formal semantics, a detailed description of the
construct, some examples, specific differences to theBACK system and the con-
struct’s idiosyncrasies.

1For some operators like ‘..’, ‘:<’ etc. we use their Prolog functor as name. A functor consists
of a predicate symbol and the number of it’s arguments separated by ‘/’.

85

86 APPENDIX D. FLEX MANUAL

:</2 Tell Expression

Synopsis: Introduction of primitive term-names.

Syntax: hdefinitioni ::= hterm-NAME i :< htermi[with filter =hfilter-listi]

Semantics: M j=k tn :< t iff [[tn; s]]J ;W � [[t; s]]J ;W

Description: The operator:</2 is used to introduceprimitive terms into the
knowledge base. For primitive terms only necessary but no suf-
ficient conditions are given. Internally, an introduction of a primi-
tive concept c:< ctop is transformed into the equivalent definition
c := prim (c) and ctop (analogously for primitive roles).prim (c)
is called aprimitive component2 and represents the information
contained in c which is not completely specified by the user, i.e.,
which makes the term primitive.

Example: publication :< ctop.
article :< publication.
publicationyear:< domain(publication)and range(number)

and feature.

See also: :=/2

2See [Nebel 90] for the technical details of introducing primitive components.

87

:=/2 Tell Expression

Synopsis: Introduction of defined term-names.

Syntax: hdefinitioni ::= hterm-NAME i := htermi[with filter =hfilter-listi]

Semantics: M j=k tn := t iff [[tn; s]]J ;W = [[tn; s]]J ;W

Description: The operator:=/2 is used to introducedefinedterms into the
knowledge base. A term-name is defined and can subsequently
be used as an abbreviation of the term given as its definition. Un-
like in the case of primitive terms the definition is taken to contain
necessary and sufficient conditions, i.e., every instance satisfying
the definition is taken to be an instance of the defined name.

Example: scientificbook := bookand scientificpublication.
hasfamousauthor:= hasauthorand range(famous).

See also: :</2

88 APPENDIX D. FLEX MANUAL

=>/2 Tell Expression

Synopsis: Specification of a rule.

Syntax: hrule i ::= hconcepti => hconcepti

Semantics: M j=k c1 => c2 iff [[kc1; s]]J ;W � [[kc2; s]]J ;W

Description: A rule or constraint is specified: all instances of c1 are constrained
to be also instances of c2. Both c1 and c2 can be complex concept
terms. Rules between roles are not supported, however.

Example: conference :< ctop.
conferencepublication :< publication.
ai conference := oneof([aaai,ijcai,ecai]).
at conference :< domain(conferencepublication)

and range(conference)
and feature.

the(at conference,aiconference)
=> hastopic:artificial intelligence

tractabledl :: at conference:ijcai.
tractabledl ?: hastopic:artificial intelligence.

Idiosyncrasy: Note that rules are not treated as material implications but only as
forward chaining rules: if an object is known to be a c1 it will be
inferred that it is also a c2. No contraposition or reasoning by case
is performed.

Furthermore, rules are not applied to value restrictions. Thus, a
rule c1 => c2 does not yield a subsumption betweenall(r,c1) and
all(r,c2).

See also: � n �>/2

89

� n �>/2 Tell Expression

Synopsis: Specification of a weighted default.

Syntax: hdefaulti ::= hconcepti�hINTEGERi�> hconcepti

Semantics: See Section C.2

Description: A weighted default is specified: an instance of c1 is inferred to
be an instance of c2 if this is consistent with the knowledge base.
The weightn specified the relevance of the default, the higher the
weight the more relevant the default. In case of conflicting de-
faults, the weights are added to determine the globally preferred
situtation.

To retrieve information based on defaults, the optionbox=dbox
has to be used inflexget.

Example: bookand the(hasprice,lt(10))�20�> buy it:yes.
book 1 :: hasprice:9.
book 1 ?: buyit:yesdbox.

BACK: Defaults are not supported by theBACK system.

See also: =>/2, ?:/2, flexget

90 APPENDIX D. FLEX MANUAL

::/2 Tell Expression

Synopsis: Enter new object descriptions into the knowledge base.

Syntax: hdescriptioni ::= hobject-NAME i :: hconcepti[in hsit-refi]
j PROLOG-VAR :: hconcepti[in hsit-refi]

Semantics: M j=k o :: c in s iff [[o]]J 2 [[c; s]]J ;W

Description: The operator::/2 is used to enter new object descriptions into the
knowledge base, and to create new objects. The left-hand side,
hobject-NAME i or PROLOG-VAR, determines whether the infor-
mation of the right hand side,hconcepti, is asserted for an existing
object or a new object. Ifhobject-NAME i refers to an existing ob-
ject thenhconcepti is added to the known object description. If
hobject-NAME i is a Prolog atom not associated with any object, a
new object is created whose description ishconcepti, and whose
name ishobject-NAME i. If PROLOG-VAR is an unbound Prolog
variable, a new object is created whose description ishconcepti;
the system generates an internal name, aunique constantof the
form ‘obj n’, and associates it with the object.

If any inconsistency occurs, the assertion is rejected, and::/2 fails,
e.g., if hconcepti is incoherent or causes an inference that would
introduce an inconsistency at another object.

If a situation is specified (in s), the description is valid in this sit-
uation and all situations extending it. If the specified situation is a
variable, a new situation is generated. If no situation is specified,
the description is added to the built-in situationinitial which all
other situations extend.

Example: principia :: hasauthor:[russell,whitehead].
russell :: famous.
principia :: all(hasauthor,famous).
russian :: unknownlanguage in s1.

BACK: The BACK system supports plain object descriptions but nositu-
ateddescriptions.

91

Idiosyncrasy: The user must neither create objects with the internally generated
names ‘objN’, nor situations with the internally generated names
‘ext sitN’.

See also: ?:/2, initial

92 APPENDIX D. FLEX MANUAL

<<=/2 Tell Expression

Synopsis: Extends a situation.

Syntax: htell-expressioni ::= hsit-extensioni
hsit-extensioni ::= hsit-NAME i<<= hsit-refi

Semantics: [[kc; s1]]J ;W � [[kc; s2]]J ;W8c 2 C

Description: The situation of the right-hand side is an extension of the situation
on the left-hand side. This means roughly speaking that all object
descriptions holding in the situation on the left-hand side also hold
in the situation on the right-hand side.

If the situation on the right-hand side is a variable, a situation
name ‘extsitN’ is created by the system. Every situation extends
the built-in situationinitial .

Example: russian :: unknownlanguage in s1.
s1 <<=s2.
russian ?: unknownlanguage in s2.

Idiosyncrasy: The user must not create situations with the internally generated
names ‘extsitN’.

See also: ::/2, ?:/2, initial

93

<>/2 Tell Expression

Synopsis: Marks the specified concepts as being mutually disjoint.

Syntax: hdisjointnessi ::= hconcept-NAME i<> hconcept-NAME i
j <> ‘[’ hconcept-NAME if,hconcept-NAME ig�‘]’

Description: All the concepts listed in the argument list are marked as being
mutually disjoint. This construct is provided as an abbreviation
and is internally expanded into correspondingnegprim terms.

Example: scientificpublication <> fiction.
scientificpublication :< publication.
fiction :< publication.
scientificpublicationand fiction ?< cbot.

Idiosyncrasy: Note that the<> operator can only be used for primitive concepts
and that the<> statement mustprecedethe definitions of the con-
cepts which are marked as being disjoint.

See also: disjoint

94 APPENDIX D. FLEX MANUAL

?</2 Ask Expression

Synopsis: Subsumption test.

Syntax: hask-expressioni ::= htermi ?< htermi

Semantics: � j= t1 ? < t2 iff [[t1; s]]I;W � [[t2; s]]I;W in all models of�

Description: The operator performs a boolean test whether thehtermi on the
left-hand side is subsumed by thehtermi on the right-hand side.

Example: article ?< publication.
europeancountry ?< country.
scientificbook := bookand scientificpublication.
scientificbook ?< bookand scientificpublication.
bookand scientificpublication ?< scientificbook.

Idiosyncrasy: Note that the order of the arguments of?< andsubsumesdiffers.

See also: equivalent, subsumes

95

?:/2 Ask Expression

Synopsis: Test whether an object instantiates a concept expression.

Syntax:
hask-expressioni ::= hobject-NAME i ?: hconcepti[in hsit-NAME i] [dbox]

j PROLOG-VAR ?: hconcepti[in hsit-NAME i] [dbox]

Semantics: � j= o ? : c in s iff M j=k o :: c in s in all models of�

Description: The operator performs a boolean test whether the object re-
ferred to byhobject-NAME i instantiates the description given as
hconcepti in the specified situation. If no situation is specified,
the test is performed in the built-in situation initial.

If dbox is specified, the test is performed by taking into account
weighted defaults.

If a Prolog variable is used, all instances of the description are
backtracked.

Example: principia ?: publication.
principia ?: some(hasauthor,famous).
X ?: atleast(2,hasauthor,famous).

% binds X to principia
X ?: haswritten:principia.

% binds X to russell; whitehead
book 4 ?: buyit:yesdbox.

BACK: In theBACK system neither defaults nor situations are supported.

Idiosyncrasy: Variables on the left-hand side are only allowed if the state
classobjectsis set toon.

See also: � n �>/2, ::/2, flexstate

96 APPENDIX D. FLEX MANUAL

�=/2 Macro

Synopsis: Operator for macro definition.

Syntax: hmacro-definitioni ::= hmacroi �= htermi
hmacroi ::= hmacro-NAME i[(VARf,VARg�)]

See also: flexmacro

97

:/2 Concept Term

Synopsis: Specification of role-fillers.

Syntax: hconcepti ::= hrole i:hvaluei
j hrole i:‘[’ hvalueif,hvalueig�‘]’
j hrole i:htermi

hvaluei ::= hobject-NAME i

j hnumber-INSTANCE i

j hstring-INSTANCE i

Semantics: [[r:o; s]]J ;W = fd : [[o]]J ;W 2 [[r; s]]J ;W(d)g

Description: An object is specified as a role-filler for a role. This operator
allows the use of constants in concept definitions. ‘r:[o1,o2]’ is
equivalent to ‘r:o1 and r:o2’.

For term-valued features the filler is a concept or a role.

Example: chineseroom :: hasauthor:searle.
principia :: hasauthor:[russell,whitehead].
flex :: hastopic:descriptionlogics.

Idiosyncrasy: Descriptions of role-fillers have no impact on concept subsump-
tion.

See also: fillers

98 APPENDIX D. FLEX MANUAL

../2 Number Term

Synopsis: Constructs a closed numerical interval from a lower and an upper
bound.

Syntax: hnumber-rangei ::= hlower-limiti
j hupper-limiti
j hlower-limiti .. hupper-limiti

Semantics: [[n1::n2; s]]J ;W = fm 2 N0 : n1 � m � n2g

Description: This operator is used to represent the closed numerical interval
between the given lower and upper limit, where lower and upper
limit are numbers. An interval where the lower limit is equal to
the upper limit contains just a single value.

Example: sixtiespublication := publicationand
the(publicationyear,1960..1969).

Idiosyncrasy: Note that the range N..N is equivalent to the number N.

See also: le, lt, ge, gt

99

all Concept Term/Method

Synopsis: Specifies and retrieves value restrictions.

Syntax: hconcepti ::= all(hrolei,hconcepti)
hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= all(hrolei[,hsit-NAME i])

Semantics: [[8r:c; s]]J ;W = fd : [[r; s]]J ;W(d) � [[c; s]]J ;Wg

Description: The concept constructorall means that all fillers for role r must be
of type c. Note that this restricts only the fillers locally at a con-
cept. To restrict the fillers of a role globally, therange operator
must be used.

The methodall retrieves the value restriction of a concept or an
objects for a role. For objects the situation has to be specified.The
optionbox can be used to take rules and defaults into account dur-
ing retrieval (seeflexgetfor details).

Example: principia :: all(hasauthor,famous).
flexget(arithmetik,all(hasauthor),Result).
% binds Result to famous

Idiosyncrasy: This construct does not imply the existence of any role-
filler. Objects having no role-filler for role r (i.e. instances of
‘atmost(0,r)’), are trivially instances ofall(r,c) for arbitrary c.

See also: flexget, no, some, range

100 APPENDIX D. FLEX MANUAL

and Concept/Role Term

Synopsis: Conjunction of concepts and roles.

Syntax: hconcepti ::= hconcepti and hconcepti
hrole i ::= hrole i and hrole i

Semantics: [[t1 u t2; s]]J ;W = [[t1; s]]J ;W \ [[t2; s]]J ;W

Description: The operatorand is the basic construct for combining terms, and
can be used both for concepts and for roles. The resulting term
represents the conjunction of both terms.

Example: publicationyear :< domain(publication)and range(number)
and feature.

sixtiespublication := publicationand
the(publicationyear,1960..1969).

origin :: bookand scientificpublication.

See also: or, not

101

atleast Concept Term/Method

Synopsis: Specifies and retrieves (qualifying) minimum restriction of roles.

Syntax: hconcepti ::= atleast(hINTEGERi,hrolei[,hconcepti])
hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= atleast(hrolei[,hconcepti] [,hsit-NAME i])

Semantics: [[�n r:c; s]]J ;W = fd : j[[r; s]]J ;W(d) \ [[c; s]]J ;W j � ng

Description: The plain minimum restrictionatleast(n,r) means that there are at
leastn role-fillers for role r; the qualifying minimum restriction
atleast(n,r,c) means that there are at leastn role-fillers of type c
for role r.

The methodatleast retrieves the (qualified) minimum restriction
for the specified role at a concept or an object. For objects the
situation has to be specified. The optionbox can be used to take
rules and defaults into account during retrieval (seeflexgetfor de-
tails).

Example: atleast(2,hasauthor,famous)?< atleast(2,hasauthor
and range(famous)).

grouppublication := atleast(3,hasauthor).
X ?: atleast(2,hasauthor,famous).

% binds X to principia
flexget(grouppublication,atleast(hasauthor),Result).
% binds Result to 3
flexget(principia,atleast(hasauthor,famous),Result).
% binds Result to 2

See also: atmost, exactly, flexget, some, no, the

102 APPENDIX D. FLEX MANUAL

atmost Concept Term/Method

Synopsis: Specifies and retrieves (qualifying) maximum restriction of roles.

Syntax: hconcepti ::= atmost(hINTEGERi,hrolei)
j atmost(hINTEGERi,hrolei,hconcepti)

hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= atmost(hrolei[,hconcepti] [,hsit-NAME i])

Semantics: [[�n r:c; s]]J ;W = fd : j[[r; s]]J ;W(d) \ [[c; s]]J ;W j � ng

Description: The plain maximum restrictionatmost(n,r) means that there are at
mostn role-fillers for role r; the qualifying maximum restriction
atmost(n,r,c) means that there are at mostn role-fillers of type c
for role r.

The methodatmost retrieves the (qualified) maximum restriction
for the specified role at a concept or an object. For objects the situ-
ation has to be specified. The optionbox can be used to take rules
and defaults into account during retrieval (seeflexgetfor details).

Example: individual publication :=atmost(1,hasauthor).
flexget(individual publication,atmost(hasauthor),Result).
% binds Result to 1
flexget(arithmetik,atmost(hasauthor,famous),Result).
% binds Result to 1

See also: atleast, exactly, some, no, the, flexget

103

cbot Concept Term

Synopsis: The incoherent concept.

Syntax: hconcepti ::= cbot

Semantics: [[?]]J ;W = ;

Description: The incoherent concept which has no instances at all. It can
be used to check the incoherence of concepts, e.g., c ?< cbot,
or to check whether value restrictions are incoherent, e.g., c ?<

all(r,cbot). It is also useful for specifying non-primitive disjoint-
ness via rules, e.g.,atleast(2,r) and atmost(3,s)=> cbot.

Example: scientificpublication <> fiction.
scientificpublication :< publication.
fiction :< publication.
scientificpublicationand fiction ?< cbot.

BACK: The incoherent concept is callednothing in BACK.

See also: ctop, rbot , disjoint , incoherent

104 APPENDIX D. FLEX MANUAL

comp Role Term

Synopsis: Infix operator for composition of two roles.

Syntax: hrole i ::= hrole i comp hrole i

Semantics: [[r1:r2; s]]J ;W = [[r1; s]]J ;W � [[r2; s]]J ;W

Description: The role operatorcomp produces the composition of two roles.

Example: from institution :=hasauthor comp atinstitution.
from country :=frominstitution comp incountry.

Idiosyncrasy: FLEX computes fillers for chains only for “active role chains”.
For roles which are defined as compositions, the systems as-
serts an active role chain itself, e.g. in the above example ‘ac-
tive role chain(hasauthor,atinstitution).’ is asserted. If you want
fillers to be inferred for compositions which are not defined roles,
you have to assert these predicates yourself.

See also: inv, domain, range

105

concepts Method

Synopsis: Retrieves all concepts instantiated by an object.

Description: The methodconceptretrieves all concepts an object instantiates.
If box=dbox these concepts are determined by taking into ac-
count weighted defaults; otherwise only definitions, descriptions
and rules are taken into account.

If a filter is specified, only concepts satisfying the filter are con-
sidered.

Example: flexget(principia,concepts(initial),Result).
% binds Result to [ctop,publication,book]

See also: instances, msc

106 APPENDIX D. FLEX MANUAL

ctop Concept Term

Synopsis: Built-in topmost concept.

Syntax: hconcepti ::= ctop

Semantics: [[>]]J;W = D

Description: ctop is the topmost concept and can be used to build primitive
concept hierarchies.

Example: publication:< ctop.

BACK: The top-most concept inBACK is calledanything.

See also: cbot, rtop

107

dir subs Method

Synopsis: Retrieves the direct subsumees of a term.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= dir subs

Description: The methoddir subs is applicable to concepts and roles and re-
trieves their direct subsumees. It can thus be used to traverse the
term hierarchies, e.g. to build a graphical representation. Mean-
ingful options arebox andfilter .

The option box can be used to take into account rules and
weighted defaults. If no box is specified the subsumption hier-
archy stemming from definitions is taken; ifbox=ibox, the sub-
sumption hierarchy also takes into account rules; ifbox=dbox
even defaults are taken into account.

If the optionfilter is used, only terms satisfying the filter are taken
into account in the subsumption hierarchy.

Example: flexget(book,dir subs,Result).
% binds Result to [novel,scientificbook]

See also: flexget, dir supers, subs, filter

108 APPENDIX D. FLEX MANUAL

dir supers Method

Synopsis: Retrieves the direct subsumers of a term.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= dir supers

Description: The methoddir supersis applicable to concepts and roles and re-
trieves their direct subsumers. It can thus be used to traverse the
term hierarchies, e.g. to build a graphical representation. Mean-
ingful options arebox andfilter .

The option box can be used to take into account rules and
weighted defaults. If no box is specified the subsumption hier-
archy stemming from definitions is taken; ifbox=ibox, the sub-
sumption hierarchy also takes into account rules; ifbox=dbox
even defaults are taken into account.

If the optionfilter is used, only terms satisfying the filter are taken
into account in the subsumption hierarchy.

Example: flexget(scientificbook,dir supers,Result).
% binds Result to
[scientific publication,book]

See also: flexget, dir subs, supers, filter

109

disjoint Ask Expression

Synopsis: Tests the disjointness of terms.

Syntax: hinteractioni ::= flexask(hask-expressioni[,box=hboxi])
hask-expressioni ::= disjoint (htermi,htermi)

Description: disjoint performs a boolean test to determine whether the two
terms given as arguments are disjoint, i.e., it conjoins both terms
and determines whether the conjoined definition is subsumed by
cbot or rbot .

If no box is specified, the disjointness test is performed on the ba-
sis of the term definitions; ifbox=ibox rules are also taken into
account; ifbox=dbox rules and weighted defaults are taken into
acount.

Example: flexask(disjoint (scientificpublication,fiction))

See also: ?</2, incoherent, cbot, rbot , flexask

110 APPENDIX D. FLEX MANUAL

domain Role Term/Method

Synopsis: Restricts the domain of a role to the specified concept.
Retrieves the domain of a role.

Syntax: hrolei ::= domain(hconcepti)
hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= domain

Semantics: [[cjr; s]]J ;W = [[r; s]]J ;W \ ([[c; s]]J ;W �D)

Description: The role operatordomain restricts the domain of a role, i.e. the
first argument of a role instance has to be an instance of the spec-
ified concept. The domain has to be a “real”concept, instances of
number andstring are not allowed to have role-fillers.

The methoddomain retrieves the domain of a role.

Example: publicationyear:< domain(publication)and range(number)
and feature.

flexget(hasauthor,domain,Result).
% binds Result to publication

Idiosyncrasy: Defined role introductions, containing only a domain restriction,
i.e., r :=domain(c), are forbidden.

See also: range, flexget

111

equivalent Ask Expression

Synopsis: Tests the equivalence of terms.

Syntax: hinteractioni ::= flexask(hask-expressioni[,box=hboxi])
hask-expressioni ::= equivalent(htermi,htermi)

Description: equivalentperforms a boolean test to determine whether the two
terms given as arguments are equivalent, i.e., it tests whether each
term is subsumed by the other.

If no box is specified, the test is performed on the basis of the
term definitions; ifbox=ibox rules are also taken into account; if
box=dbox rules and weighted defaults are taken into acount.

Example: flexask(equivalent(scientificbook,book and
scientificpublication))

See also: ?</2, subsumes

112 APPENDIX D. FLEX MANUAL

equivalents Method

Synopsis: Retrieves equivalent terms.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= equivalents

Description: The methodequivalentsis applicable to concepts and roles and
retrieves equivalent concepts or roles. Meaningful options arebox
andfilter .

The option box can be used to take into account rules and
weighted defaults. If no box is specified equivalence is tested only
onb the basis of definitions; ifbox=ibox, the rules are taken into
account; ifbox=dboxdefaults are also taken into account.

If the optionfilter is used, only terms satisfying the filter are taken
into account.

See also: flexget

113

exactly Concept Term

Synopsis: (Qualifying) minimum and maximum restriction.

Syntax: hconcepti ::= exactly(hINTEGERi,hrolei)
j exactly(hINTEGERi,hrolei,hconceptual-typei)

Description: There are exactly n role-fillers at role r, resp. there are exactly n
role-fillers of type c

Example: arithmetik ::exactly(1,hasauthor).

Idiosyncrasy: Internally, the restrictions ‘exactly(n,r)’ and ‘exactly(n,r,c)’ are
transformed into ‘atleast(n,r) and atmost(n,r)’ and ‘atleast(n,r,c)
and atmost(n,r,c)’, respectively.

See also: atleast, atmost

114 APPENDIX D. FLEX MANUAL

feature Role Term

Synopsis: Specifies a role as being a feature, i.e. functional.

Syntax: hrole i ::= feature

Semantics: hd1; d2i 2 [[fp; s]]J ; hd1; d3i 2 [[fp; s]]J) d2 = d3

Description: Features are roles which are functional, i.e. no object can have
more than one filler for a feature. Note that features are partial
functions, i.e. there may be objects having no filler at all for a fea-
ture.

Example: publicationyear:< domain(publication)and range(number)
and feature.

See also: :/2

115

fillers Method

Synopsis: Retrieves the fillers at a role.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= fillers(hrolei[,hsit-NAME i])

Description: To retrieve the role-fillers of an object or a concept, the method
fillers can be used. Depending on the specified option forbox,
rules (box=ibox) and defaults (box=dbox) are taken into account
to determine the fillers.

Example: flexget(principia,fillers(hasauthor,initial),Result).
% binds Result to [russell,whitehead]

See also: :/2, flexget

116 APPENDIX D. FLEX MANUAL

filter Method

Synopsis: Retrieves the filters satisfied by a term.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= filter

Description: Returns the filters associated with a concept or a role. Note that
filters allow a limited form of representing second-order informa-
tion, i.e. properties of concepts or roles. Filters apply only to the
term at which they have been specified and are not inherited.

The following filters are built-in:

dbox lhs is satisfied by concepts occurring on the left-hand
sides of defaults.

dbox rhs is satisfied by concepts occurring on the right-hand
sides of defaults.

ibox lhs is satisfied by concepts occurring on the left-hand sides
of rules.

ibox rhs is satisfied by concepts occurring on the right-hand
sides of rules.

user defined is satisfied by concepts or roles which are defined
by the user.

See also: flexget

117

flexask Interaction

Synopsis: Performs a boolean test as specified by the argument.

Syntax: hinteractioni ::= flexask(hask-expressioni)[,box=hboxi]
hask-expressioni ::= htermi ?< htermi

j hobject-NAME i ?: hconcepti[in hsit-NAME i]
j PROLOG-VAR ?: hconcepti[in hsit-NAME i]
j disjoint (htermi,htermi)
j subsumes(htermi htermi)
j equivalent(htermi,htermi)
j incoherent(htermi)
j satisfies(hterm-NAME i,hfilter-listi)

Description: This operator is used to perform boolean tests regarding subsump-
tion, disjointness, equivalence, incoherence, or satisfaction of fil-
ters.

If no box is specified the tests are performed on the basis of defi-
nitions only; if box=rules rules are taken into account as well; if
box=defaultsrules and defaults are taken into account.

Example: flexask(disjoint (scientificpublication,fiction))

Idiosyncrasy: The flexask operator can be omitted for expressions containing
the operators?</2 or ?:/2, since they uniquely identify an expres-
sion as aflexask.

See also: ?</2, ?:/2, disjoint , equivalent, satisfies, incoherent, subsumes

118 APPENDIX D. FLEX MANUAL

flexdump Interaction

Synopsis: Dumps the internal representation of the current knowledge base.

Syntax: hinteractioni ::= flexdump(hfile-NAME i[,Comment])

Description: flexdump dumps the the contents of the knowledge base into the
file specified inhfile-NAME i. A dumped knowledge base can be
loaded withflexload.

A comment can be specified as second argument which will be
output when the knwoledge base is loaded.

Example: flexdump(’MyFavoriteFilename’).
flexdump(’MyFavoriteFilename’,’Version 2.3’)

BACK: In the BACK systemflexdump could be called without an argu-
ment, in which case the knowledge base was dumped to the stan-
dard output.

Idiosyncrasy: The form of the file name depends on your local site, but should
be quoted according to the Prolog convention if it contains special
characters.

See also: flexload

119

flexget Interaction

Synopsis: Retrieves information about entities.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= all(hrolei[,hsit-NAME i])

j atleast(hrolei[,hconcepti] [,hsit-NAME i])
j atmost(hrolei[,hconcepti] [,hsit-NAME i])
j concepts(hsit-NAME i)
j dir subs
j dir supers
j domain
j equivalents
j fillers(hrolei[,hsit-NAME i])
j filter
j help
j instances(hsit-NAME i)
j msc(hsit-NAME i)
j range
j subs
j supers
j tvf filler (hrolei[,hsit-NAME i])

hoptionsi ::= box=hboxi
j filter=hfilter-listi

Description: Whereasflexaskonly performs boolean tests,flexgetcan be used
to retrieve specific information about an entity. The retrieved in-
formation is bound to a Prolog variable.

The optionbox specifies on which basis the information is re-
trieved. Note that this does depend both on the option and on the
fact whether the entity is a concept or an object:

EntitynBox Option default box=rules box=defaults
rules rules

concepts definitions definitions definitions
defaults

definitions definitions definitions
objects descriptions descriptions descriptions

rules rules rules, defaults

120 APPENDIX D. FLEX MANUAL

It is thus not possible to retrieve information about objects without
taking into account rules.

The optionfilter can be used to restrict the concept or role names
which are returned to names satisfying a specific filter. This can
be useful if a component is not interested in internally generated
names, or is only interested in a subset of the hierarchy.

Example: flexget(principia,fillers(hasauthor,initial),Result).
% binds Result to [russell,whitehead]

See also: flexask

121

flexinit Interaction

Synopsis: Initializes theFLEX system.

Syntax: hinteractioni ::= flexinit

Description: flexinit initializes theFLEX system completely, i.e. all internal
data structures are initialized, the state variables are set back to
their values at start-up time (see below), and all previously entered
definitions, rules, defaults , descriptions, and macros are removed.

flexinit is usually the first tell in a file read in byFLEX.

Setting after
State Settings FLEXINIT

classobjects on, off on
defspacedbox best,all best

eval dbox local,global local
introduction forward,noforward noforward
syntaxcheck on,off on

verbosity silent,error,warning,info,trace info

See also: flexstate, flexread

122 APPENDIX D. FLEX MANUAL

flexload Interaction

Synopsis: Loads a dumped internal representation from a file.

Syntax: hinteractioni ::= flexload(hfile-NAME i)

Description: flexload loads a previously dumped knowledge base from file
hfile-NAME i back into theFLEX system, so that the state of the
FLEX system is restored to the state ofFLEX before the knowledge
base was dumped.

Example: flexload(’MyFavoriteFilename’).

Idiosyncrasy: The form of the file name depends on your local site, but should
be quoted according to the Prolog convention if it contains special
characters.

See also: flexdump, flexread

123

flexmacro Interaction

Synopsis: Definition of a macro.

Syntax: hinteractioni ::= flexmacro(hmacro-definitioni)

Description: The macro-facility can be used to define new term-forming oper-
ators or to rename existing term-forming operators. Note that the
Prolog-variables occurring in the term on the right-hand side must
all be bound by arguments on the left-hand side of the macro.

Example: flexmacro(all1(R,C) � = all(R,C)and atleast(1,R)).
flexmacro(min(N,R) � = atleast(N,R)).

Idiosyncrasy: The macro-facility is restricted to macros for terms. Whole in-
teraction sequences withFLEX can be easily defined as Prolog-
predicates:

my init :- flexinit ,
flexstate(verbosity=warnings).

124 APPENDIX D. FLEX MANUAL

flexread Interaction

Synopsis: ReadsFLEX commands from a file.

Syntax: hinteractioni ::= flexread(hfile-NAME i)

Description: Reads from the specified file interaction operations for building up
and accessing aFLEX knowledge base.

The file read byflexread may contain further interaction opera-
tions. Thus, it is possible to issueflexinit , flexread, flexload, and
flexdump operations from the file read.

For assuring that a file is read into an initialized emptyFLEX

system the file should contain as first statement aflexinit .
For assuring thatFLEX understands some predefined macros
a further statement can be explicitly issued to load them:
flexread(<macrofile name>).

Depending on the verbosity setting, messages will be produced
and written to the current standard output.

Example: flexread(’DOCU/examples.model’).

Idiosyncrasy: The form of the file name depends on your local site, but should
be quoted according to the Prolog convention if it contains special
characters.

Although a file read byflexread may contain arbitrary calls to
Prolog, it should be noted that this is an additional feature of the
Prolog implementation ofFLEX, which might not be supported in
other implementations.

See also: flexload, flexdump, flexstate

125

flexstate Interaction

Synopsis: Displays, modifies or retrieves the values of global state variables.

Syntax: hinteractioni ::= flexstate[(hstatei)]
hstatei ::= verbosity = silent

j verbosity = error
j verbosity = warning
j verbosity = info
j verbosity = trace
j introduction = forward
j introduction = noforward
j classobjects= on
j classobjects= off
j syntax check= on
j syntax check= off

Description: flexstatecan be used to setFLEX states which determine the be-
havior of the system:

verbosity determines which types of output messages are pro-
duced.

silent no output is produced

errors only errors are reported

warnings errors and warnings are issued

info additional information is reported

trace produces an exhaustive trace of what happens in
BACK.

introduction determines whether undefined names are intro-
duced automatically.

noforward Forward introduction of names is not per-
formed. Thus, names have to be defined before they are
used.

forward If a name is used without being previously de-
fined, it will be introduced automatically as a primitive
term.

Note that while forward introduction is useful for small test
cases, it may be problematic for modeling large domains—

126 APPENDIX D. FLEX MANUAL

spelling errors will be difficult to detect, since misspelled
terms are automatically introduced as new terms.

classobjects determines whether objects are classified wrt the
conceptual hierarchy or not. Note that the methodinstances
can only be used ifclassobjectsis set toon.

syntax check determines whether the tells contained in a file
read in byflexread are first checked for syntactic correct-
ness.

Instead of the full name of state variables and their values unam-
biguous abbreviations can be used.

Example: flexstate(verbosity =errors).
flexstate(ve = err).

Idiosyncrasy: Note that theflexinit resets all states to their default values. To
keep your preferred sates you should write your own initialization
routine as a Prolog predicate, e.g.:

my init :- flexinit ,
flexstate(verbosity=warnings).

See also: flexinit

127

flextell Interaction

Synopsis: Tells theFLEX system the information conveyed in the argument.

Syntax: hinteractioni ::= flextell(htell-expressioni)
htell-expressioni ::= hdefinitioni

j hrule i
j hdescriptioni
j hdefaulti
j hmacro-definitioni
j hdisjointnessi
j hsit-extensioni

Description: This operator is used to assert new information in the form of tell-
expressions.

Example: flextell(publication :¡ ctop).

Idiosyncrasy: You may drop theflextell for tell-expressions consisting of the op-
erators:=/2, :</2, =>/2, � n �>/2 or ::/2, since they uniquely
identify an expression as aflextell.

See also: flexask, flexget

128 APPENDIX D. FLEX MANUAL

ge, gt Number Term

Synopsis: Constructs a numerical interval with infinite upper bound.

Syntax: hlower-limit i ::= ge(hnumber-INSTANCE i)
j gt(hnumber-INSTANCE i)

Semantics: [[> n; s]]J ;W = fm 2 N0 : m > ng

[[� n; s]]J ;W = fm 2 N0 : m � ng

Description: These operators construct from a given number an interval with an
infinite upper bound and either closed lower bound (in case ofge)
or open lower bound (in case ofgt).

Example: human :¡ctop.
hasage :¡range(number).
adult :=humanand hasage(ge(18))

See also: ../2, le, lt, number

129

help Method

Synopsis: Retrieves the methods available for an entity.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= help

Description: The methodhelp retrieves all methods available for an entity. No
options are meaningful for this method.

See also: flexget

130 APPENDIX D. FLEX MANUAL

incoherent Ask Expression

Synopsis: Tests whether a term is incoherent.

Syntax: hinteractioni ::= flexask(hask-expressioni[,box=hboxi])
hask-expressioni ::= incoherent(htermi)

Description: incoherent tests whether the term given as argument is incoher-
ent, i.e., whether it is subsumed bycbot or rbot .

If no box is specified, the test is performed on the basis of the
term definitions; ifbox=ibox rules are also taken into account; if
box=dbox rules and weighted defaults are taken into acount.

Example: flexask(incoherent(fiction and scientificpublication))

See also: ?</2, disjoint , cbot, rbot

131

initial Situation

Synopsis: Built-in situation.

Description: The built-in situationinitial is extended by all other situations. If
an object description does not contain a situation it is take to be a
description ofinitial . Similarly, an instanceship query which does
not contain a situation is evaluated wrt ‘initial’.

Example: flexget(principia,msc(initial),Result).
% binds Result to [book]

Idiosyncrasy: In tells and queries you do not have to specify the built-in situa-
tion initial . In flexget you have to specify a situation, however,
to disambiguate between methods for concepts and methods for
objects.

See also: ::/2, ?:/2, flexget

132 APPENDIX D. FLEX MANUAL

inv Role Term

Synopsis: Construction of inverse roles.

Syntax: hrole i ::= inv(hrolei)

Semantics: [[r�; s]]J ;W = fhd1; d2i : hd2; d1i 2 [[r; s]]J ;Wg

Description: inv is a role operator for defining the inverse of a role. The argu-
ment ofinv may be a role name or an arbitrary role term.

Example: haswritten := inv(hasauthor).
X ?: haswritten:principia.

% binds X to russell;whitehead

Idiosyncrasy: Note that you cannot invert a role if its range is of typenumber or
string.

See also: comp, domain, range

133

instances Method

Synopsis: Retrieves all instances of a concept

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= instances(hsit-NAME i)

Description: All instances of a concept in the specified situation are retrieved.

Example: flexget(article,instances(initial),Result).
% binds Result to
[chinese room,multi pub,tractable dl,obj 2]

See also: ?:/2, concepts, msc, flexget

134 APPENDIX D. FLEX MANUAL

le, lt Number Term

Synopsis: Constructs a numerical interval with infinite lower bound.

Syntax: hupper-limiti ::= le(hnumber-INSTANCE i)
j lt (hnumber-INSTANCE i)

Semantics: [[< n; s]]J ;W = fm 2 N0 : m < ng

[[� n; s]]J ;W = fm 2 N0 : m � ng

Description: These operators construct from a given number an interval with
infinite lower bound and an either closed upper bound (in case of
le) or an open upper bound (in case oflt).

Example: bookand the(hasprice,lt (10))�20�> buy it:yes.

See also: ../2, ge, gt, number

135

msc Method

Synopsis: Retrieves the most specific concepts an object instantiates.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= msc(hsit-NAME i)

Description: The methodmsc retrieves the most specific concepts an object
instantiates. Ifbox=dbox these concepts are determined by tak-
ing into account weighted defaults; otherwise only definitions, de-
scriptions and rules are taken into account.

If a filter is specified, only concepts satisfying the filter are con-
sidered.

Example: flexget(principia,msc(initial),Result).
% binds Result to [book]

See also: flexget, concepts, instances

136 APPENDIX D. FLEX MANUAL

no Concept Term

Synopsis: (Qualifying) nonexistence restriction.

Syntax: hconcepti ::= no(hrolei,hconceptual-typei)
j no(hrolei)

Description: There are no role-fillers at role r, resp. there are no role-fillers of
type c at role r.

Idiosyncrasy: Internally, the restrictions ‘no(r)’ and ‘no(r,c)’ are transformed
into ‘atmost(0,r)’ and into ‘atmost(0,r,c)’, respectively.

See also: all, atleast, atmost, exactly,some, the

137

not Concept/Role Term

Synopsis: Negation of concepts and roles

Syntax: hconcepti ::= not(hconcepti)
hrolei ::= not(hrolei)

Semantics: [[:c; s]]J ;W = D n [[c; s]]J ;W

[[:r; s]]J ;W = (D �D) n [[r; s]]J ;W

Description: The not operator can be used to negate concepts and roles. The
use of thenot operator will usually lead to disjunctive normal-
forms, which in turn may lead to inefficient performance. To de-
fine concepts as being disjoint it may be more efficient to use<>.

See also: <>, and, or

138 APPENDIX D. FLEX MANUAL

number Concept Term

Synopsis: Built-in topmost number.

Syntax: hnumberi ::= number

Semantics: [[>n; s]]J ;W = N0

Description: number is the topmost number.

Example: publicationyear:< domain(publication)and range(number)
and feature.

See also: ../2, ge,gt, le,lt

139

oneof Concept Term

Synopsis: Extensional concept definition.

Syntax: hconcepti ::= oneof(‘[’ hobject-NAME i)f,hobject-NAME ig�‘]’

Semantics: [[fo1; : : : ;omg_; s]]J ;W = f[[o1]]J ; : : : ; [[om]]Jg

Description: An extensional concept term is defined by its instances o1,. . . ,on.
Note that the instances mentioned in aoneofdescription, are full-
fledged ABox objects and can have roles on their own, etc.

Example: europeancountry :=oneof([france,germany,italy,uk]).

Idiosyncrasy: If intensional and extensional specifications are mixed (e.g., skan-
dinaviancountry := countryand oneof([denmark, finland, nor-
way, sweden]) it does not follow semantically that the constants
mentioned extensionally are instances of the defined concept.
Thus the above definition does not entail that denmark is a skandi-
naviancountry, since it is not asserted that denmark is a country.

See also: :/2, fillers

140 APPENDIX D. FLEX MANUAL

or Concept/Role Term

Synopsis: Disjunction of concepts and roles

Syntax: hconcepti ::= hconcepti or hconcepti
hrole i ::= hrole i or hrole i

Semantics: [[t1 t t2; s]]J ;W = [[t1; s]]J ;W [[[t2; s]]J ;W

Description: The instances of c1 or c2 are all objects which are either instances
of c1 or of c2, or of both.

BACK: TheBACK system supports disjunction only in queries.

Example: scientificpublication1 :<ctop.
fiction1 :<ctop.
publication1 :<scientificpublication1or fiction1.

See also: and, not

141

range Role Term/Method

Synopsis: Restricts and retrieves the range of a role.

Syntax: hrolei ::= range(hconcepti)

Semantics: [[rjc; s]]J ;W = [[r; s]]J ;W \ (D � [[c; s]]J ;W)

Description: range is a role operator that restricts the fillers of a role to in-
stances of a given concept. A role can be inverted only if its range
is a “real” concept, i.e. not anumber or astring. Defined role in-
troductions, containing only a range restriction, i.e. r :=range(c)
are forbidden.

The methodrange retrieves the range of a role.

Example: publicationyear:< domain(publication)and range(number)
and feature.

See also: comp, inv, domain

142 APPENDIX D. FLEX MANUAL

satisfies Ask Expression

Synopsis: Tests whether a term satisfies a filter.

Syntax: hinteractioni ::= flexask(hask-expressioni[,box=hboxi])
hask-expressioni ::= satisfies(htermi,hfilter-list i)

Description: satisfiesperforms a boolean test to determine whether the term
given as argument satisfies the filter.

Thebox option is not meaningul for this ask expression.

Example: flexask(satisfies(europeanconferenc,geotype conf)).

See also: flexask, flexget, filter

143

some Concept Term

Synopsis: (Qualifying) existence restriction.

Syntax: hconcepti ::= some(hrole i,hconceptual-typei)
j some(hrole i)

Description: There is at least one role-filler at role r, resp. there is at least one
role-filler of type c at role r.

Example: book author :=some(haswritten,book).

Idiosyncrasy: Internally, the restrictions ‘some(r)’ and ‘some(r,c)’ are trans-
formed into ‘atleast(1,r)’ and ‘atleast(1,r,c)’, respectively.

See also: all, no, atleast, the, exactly, atmost

144 APPENDIX D. FLEX MANUAL

string Term

Synopsis: Built-in topmost string.

Syntax: hconcepti ::= string

Description: string is the topmost string having all other strings as instances.

Idiosyncrasy: Strings in FLEX are arbitrary Prolog atoms and need to be en-
closed – according to the Prolog convention – in single-quotes if
they contain special characters.

145

subs Method

Synopsis: Retrieves the subsumees of a term.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= subs

Description: The methodsubsis applicable to concepts and roles and retrieves
their subsumees. Meaningful options arebox andfilter .

The option box can be used to take into account rules and
weighted defaults. If no box is specified the subsumption hier-
archy stemming from definitions is taken; ifbox=ibox, the sub-
sumption hierarchy also takes into account rules; ifbox=dbox
even defaults are taken into account.

If the optionfilter is used, only terms satisfying the filter are taken
into account in the subsumption hierarchy.

Example: flexget(article,subs,Result).
% binds Result to
[cbot,conference article,journal article]

See also: dirsubs, supers, subsumes

146 APPENDIX D. FLEX MANUAL

subsumes Ask Expression

Synopsis: Subsumption test.

Syntax: hinteractioni ::= flexask(hask-expressioni[,box=hboxi])
hask-expressioni ::= subsumes(htermi htermi)

Description: This operator performs a boolean test whether thehtermi con-
tained in the first argument subsumes thehtermi contained in the
second argument. Actually it is equivalent to?<.

If no box is specified, the test is performed on the basis of the
term definitions; ifbox=ibox rules are also taken into account; if
box=dbox rules and weighted defaults are taken into acount.

Example: flexask(subsumes(book,novel))

See also: ?<, equivalent, flexask

147

supers Method

Synopsis: Retrieves the subsumers of a term.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= supers

Description: The methodsubsis applicable to concepts and roles and retrieves
their subsumers. Meaningful options arebox andfilter .

The option box can be used to take into account rules and
weighted defaults. If no box is specified the subsumption hier-
archy stemming from definitions is taken; ifbox=ibox, the sub-
sumption hierarchy also takes into account rules; ifbox=dbox
even defaults are taken into account.

If the optionfilter is used, only terms satisfying the filter are taken
into account in the subsumption hierarchy.

Example: flexget(novel,supers,Result).
% binds Result to
[ctop,publication,fiction,book]

See also: dirsupers, subs, subsumes

148 APPENDIX D. FLEX MANUAL

term valued Role Term

Syntax: hrole i ::= term valued

Synopsis: A feature taking terms as values.

Description: Term-valued features take terms, i.e. concepts or roles as fillers in-
stead of objects. The following inferences are performed for term-
valued features:

* ft:t1 u ft:t2
:
= ft : (t1 u t2)

* ft : ?
:
= ?

t1 v t2 * ft:t1 v ft:t2

Example: hastopic :<domain(scientificpublication)
and term valued.

See also: :/,tvf filler

149

the Concept Term

Synopsis: Uniqueness restriction.

Syntax: hconcepti ::= the(hrolei,hconceptual-typei)

Description: There is exactly one role-filler at role r, and this role-filler is of
type c. This operator makes value restrictions for functional roles
(features) more readable, sinceall(age,ge(18)) easily has the con-
notation that an object has more than one age.
Internally, such a restriction is transformed into a conjunction of
an all restriction and minimum and maximum restrictions with
value 1.

Example: sixties publication := publicationand
the(publicationyear,1960..1969).

Idiosyncrasy: Internally, the restriction ‘the(r,c)’ is transformed into
‘atleast(1,r) and atmost(1,r) and all(r,c)’.

See also: all, some, no

150 APPENDIX D. FLEX MANUAL

tvf filler Method

Synopsis: Retrieves the term filling a term-valued feature.

Syntax: hinteractioni ::= flexget(hentityi,hmethodi,[hoptionsi,]VAR)
hmethodi ::= tvf filler (feature[,hsit-NAME i])

Description: To retrieve the filler of a term-valued featuer at an object or a con-
cept, the methodtvf filler can be used. Depending on the speci-
fied option forbox, rules (box=ibox) and defaults (box=dbox) are
taken into account to determine the fillers.

Example: flexget(flex,tvf filler (hastopic,initial),Result).
% binds Result to description logics

See also: termvalued, fillers, :/2

